500 research outputs found

    Grid multi-category response logistic models.

    Get PDF
    BackgroundMulti-category response models are very important complements to binary logistic models in medical decision-making. Decomposing model construction by aggregating computation developed at different sites is necessary when data cannot be moved outside institutions due to privacy or other concerns. Such decomposition makes it possible to conduct grid computing to protect the privacy of individual observations.MethodsThis paper proposes two grid multi-category response models for ordinal and multinomial logistic regressions. Grid computation to test model assumptions is also developed for these two types of models. In addition, we present grid methods for goodness-of-fit assessment and for classification performance evaluation.ResultsSimulation results show that the grid models produce the same results as those obtained from corresponding centralized models, demonstrating that it is possible to build models using multi-center data without losing accuracy or transmitting observation-level data. Two real data sets are used to evaluate the performance of our proposed grid models.ConclusionsThe grid fitting method offers a practical solution for resolving privacy and other issues caused by pooling all data in a central site. The proposed method is applicable for various likelihood estimation problems, including other generalized linear models

    Symbol-LLM: Leverage Language Models for Symbolic System in Visual Human Activity Reasoning

    Full text link
    Human reasoning can be understood as a cooperation between the intuitive, associative "System-1" and the deliberative, logical "System-2". For existing System-1-like methods in visual activity understanding, it is crucial to integrate System-2 processing to improve explainability, generalization, and data efficiency. One possible path of activity reasoning is building a symbolic system composed of symbols and rules, where one rule connects multiple symbols, implying human knowledge and reasoning abilities. Previous methods have made progress, but are defective with limited symbols from handcraft and limited rules from visual-based annotations, failing to cover the complex patterns of activities and lacking compositional generalization. To overcome the defects, we propose a new symbolic system with two ideal important properties: broad-coverage symbols and rational rules. Collecting massive human knowledge via manual annotations is expensive to instantiate this symbolic system. Instead, we leverage the recent advancement of LLMs (Large Language Models) as an approximation of the two ideal properties, i.e., Symbols from Large Language Models (Symbol-LLM). Then, given an image, visual contents from the images are extracted and checked as symbols and activity semantics are reasoned out based on rules via fuzzy logic calculation. Our method shows superiority in extensive activity understanding tasks. Code and data are available at https://mvig-rhos.com/symbol_llm.Comment: Accepted by NeurIPS 202

    Mining Cross-Person Cues for Body-Part Interactiveness Learning in HOI Detection

    Full text link
    Human-Object Interaction (HOI) detection plays a crucial role in activity understanding. Though significant progress has been made, interactiveness learning remains a challenging problem in HOI detection: existing methods usually generate redundant negative H-O pair proposals and fail to effectively extract interactive pairs. Though interactiveness has been studied in both whole body- and part- level and facilitates the H-O pairing, previous works only focus on the target person once (i.e., in a local perspective) and overlook the information of the other persons. In this paper, we argue that comparing body-parts of multi-person simultaneously can afford us more useful and supplementary interactiveness cues. That said, to learn body-part interactiveness from a global perspective: when classifying a target person's body-part interactiveness, visual cues are explored not only from herself/himself but also from other persons in the image. We construct body-part saliency maps based on self-attention to mine cross-person informative cues and learn the holistic relationships between all the body-parts. We evaluate the proposed method on widely-used benchmarks HICO-DET and V-COCO. With our new perspective, the holistic global-local body-part interactiveness learning achieves significant improvements over state-of-the-art. Our code is available at https://github.com/enlighten0707/Body-Part-Map-for-Interactiveness.Comment: To appear in ECCV 202

    OPR-Miner: Order-preserving rule mining for time series

    Full text link
    Discovering frequent trends in time series is a critical task in data mining. Recently, order-preserving matching was proposed to find all occurrences of a pattern in a time series, where the pattern is a relative order (regarded as a trend) and an occurrence is a sub-time series whose relative order coincides with the pattern. Inspired by the order-preserving matching, the existing order-preserving pattern (OPP) mining algorithm employs order-preserving matching to calculate the support, which leads to low efficiency. To address this deficiency, this paper proposes an algorithm called efficient frequent OPP miner (EFO-Miner) to find all frequent OPPs. EFO-Miner is composed of four parts: a pattern fusion strategy to generate candidate patterns, a matching process for the results of sub-patterns to calculate the support of super-patterns, a screening strategy to dynamically reduce the size of prefix and suffix arrays, and a pruning strategy to further dynamically prune candidate patterns. Moreover, this paper explores the order-preserving rule (OPR) mining and proposes an algorithm called OPR-Miner to discover strong rules from all frequent OPPs using EFO-Miner. Experimental results verify that OPR-Miner gives better performance than other competitive algorithms. More importantly, clustering and classification experiments further validate that OPR-Miner achieves good performance

    Rifamycin Resistance in Clostridium difficile Is Generally Associated with a Low Fitness Burden

    Get PDF
    We characterized clinically occurring and novel mutations in the β subunit of RNA polymerase in Clostridium difficile (CdRpoB), conferring rifamycin (including rifaximin) resistance. The Arg(505)Lys substitution did not impose an in vitro fitness cost, which may be one reason for its dominance among rifamycin-resistant clinical isolates. These observations were supported through the structural modeling of CdRpoB. In general, most mutations lacked in vitro fitness costs, suggesting that rifamycin resistance may in some cases persist in the clinic

    An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles

    Get PDF
    Information fusion method of INS/GPS navigation system based on filtering technology is a research focus at present. In order to improve the precision of navigation information, a navigation technology based on Adaptive Kalman Filter with attenuation factor is proposed to restrain noise in this paper. The algorithm continuously updates the measurement noise variance and processes noise variance of the system by collecting the estimated and measured values, and this method can suppress white noise. Because a measured value closer to the current time would more accurately reflect the characteristics of the noise, an attenuation factor is introduced to increase the weight of the current value, in order to deal with the noise variance caused by environment disturbance. To validate the effectiveness of the proposed algorithm, a series of road tests are carried out in urban environment. The GPS and IMU data of the experiments were collected and processed by dSPACE and MATLAB/Simulink. Based on the test results, the accuracy of the proposed algorithm is 20% higher than that of a traditional Adaptive Kalman Filter. It also shows that the precision of the integrated navigation can be improved due to the reduction of the influence of environment noise
    corecore