26 research outputs found

    Asymmetric magnetization splitting in diamond domain structure: Dependence on exchange interaction and anisotropy

    Full text link
    The distributions of magnetization orientation for both Landau and diamond domain structures in nano-rectangles have been investigated by micromagnetic simulation with various exchange coefficient and anisotropy constant. Both symmetric and asymmetric magnetization splitting are found in diamond domain structure, as well as only symmetric magnetization splitting in Landau structure. In the Landau structure, the splitting angle increases with the exchange coefficient but decreases slightly with the anisotropy constant, suggesting that the exchange interaction mainly contributes to the magnetization splitting in Landau structure. However in the diamond structure, the splitting angle increases with the anisotropy constant but derceases with the exchange coefficient, indicating that the magnetization splitting in diamond structure is resulted from magnetic anisotropy.Comment: 5 pages, 5 figure

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Verapamil Attenuated Prediabetic Neuropathy in High-Fat Diet-Fed Mice through Inhibiting TXNIP-Mediated Apoptosis and Inflammation

    No full text
    Diabetic neuropathy (DN) is a common and severe complication of diabetes mellitus. There is still a lack of an effective treatment to DN because of its complex pathogenesis. Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of thioredoxin, has been shown to be associated with diabetic retinopathy and nephropathy. Herein, we aim to investigate the role of TXNIP in prediabetic neuropathy and therapeutic potential of verapamil which has been shown to inhibit TXNIP expression. The effects of mediating TXNIP on prediabetic neuropathy and its exact mechanism were performed using high-fat diet- (HFD-) induced diabetic mice and palmitate-treated neurons. Our results showed that TXNIP upregulation is associated with prediabetic neuropathy in HFD-fed mice. TXNIP knockdown improved DN in HFD-induced prediabetic mice. Mechanistically, increased TXNIP in dorsal root ganglion is transferred into the cytoplasm and shuttled to the mitochondria. In cytoplasm, TXNIP binding to TRX1 results in the increased oxidative stress and inflammation. In mitochondria, TXNIP binding to TRX2 induced mitochondria dysfunction and apoptosis. TXNIP isolated from TRX2 then shuttles to the cytoplasm and binds to NLRP3, resulting in further increased TXNIP-NLRP3 complex, which induced the release of IL-1β and the development of inflammation. Thus, apoptosis and inflammation of dorsal root ganglion neuron eventually cause neural dysfunction. In addition, we also showed that verapamil, a known inhibitor of calcium channels, improved prediabetic neuropathy in the HFD-fed mice by inhibiting the upregulation of TXNIP. Our finding suggests that TXNIP might be a potential target for the treatment of neuropathy in prediabetic patients with dyslipidemia

    Mechanically Interlocked Hydrogel–Elastomer Strain Sensor with Robust Interface and Enhanced Water—Retention Capacity

    No full text
    Hydrogels are stretchable ion conductors that can be used as strain sensors by transmitting strain-dependent electrical signals. However, hydrogels are susceptible to dehydration in the air, leading to a loss of flexibility and functions. Here, a simple and general strategy for encapsulating hydrogel with hydrophobic elastomer is proposed to realize excellent water-retention capacity. Elastomers, such as polydimethylsiloxanes (PDMS), whose hydrophobicity and dense crosslinking network can act as a barrier against water evaporation (lost 4.6 wt.% ± 0.57 in 24 h, 28 °C, and ≈30% humidity). To achieve strong adhesion between the hydrogel and elastomer, a porous structured thermoplastic polyurethane (TPU) is used at the hydrogel-elastomer interface to interlock the hydrogel and bond the elastomer simultaneously (the maximum interfacial toughness is over 1200 J/m2). In addition, a PDMS encapsulated ionic hydrogel strain sensor is proposed, demonstrating an excellent water-retention ability, superior mechanical performance, highly linear sensitivity (gauge factor = 2.21, at 100% strain), and robust interface. Various human motions were monitored, proving the effectiveness and practicability of the hydrogel-elastomer hybrid

    Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.

    No full text
    Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N). Based on atmospheric CO2 observations at Point Barrow (BRW) in Alaska, satellite-derived NDVI (a proxy of vegetation productivity), and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average). The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit) the responsiveness of carbon assimilation and/or decomposition to warming under high (low) precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future precipitation projections, and to better represent the nonlinearity of carbon cycle responses to climate in current state-of-the-art land surface models

    Occurrence and air-soil exchange of organochlorine pesticides and polychlorinated biphenyls at a CAWNET background site in central China: Implications for influencing factors and fate

    No full text
    Ambient air and soil samples were collected between March 2012 and March 2013 at jinsha, a regional background site in central China, to measure the concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The average concentrations of total OCPs and total PCBs were 191 +/- 107 and 39.4 +/- 27.1 pg/m(3) in air (gaseous and particulate phase) and 0.585 +/- 0.437 and 0.083 +/- 0.039 ng/g in soil, respectively. The higher concentrations of p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) and p,p'-DDT/p,p'-DDE ratios in the soil indicated recent p,p'-DDT input to the soil. A strong positive temperature dependence and average fugacity fraction value > 0.5 were observed for p,p'-DDT, suggesting that volatilization of residual DDT in the soil was the main influencing factor on atmospheric p,p'-DDT. Highly average fugacity fractions (>0.7) of trans-chlordane (TC) and cis-chlordane (CC) and high TC/CC ratios both in the soil and atmosphere suggested fresh inputs. Higher gaseous concentrations of hexachlorobenzene (HCB) were observed in winter and negative temperature dependence was directly attributed to the surrounding ongoing source (e.g. fuel consuming activities), especially in winter. Overall, most targeted OCP5 and PCBs were influenced by long-range transport, and fugacity fraction values indicated highly volatile compounds (e.g. alpha-hexachlorocyclohexane (alpha-HCH) and lower chlorinated PCBs) were volatilized and low volatility compounds (e.g. p,p'-DDE and higher chlorinated PCBs) were deposited at the air soil interface. Knowing the source and sink of OCPs and PCBs can help to control their pollution in this area and provide a reference for other studies. (C) 2017 Elsevier Ltd. All rights reserved

    Responses of the net changes in the growing season atmospheric CO<sub>2</sub> concentrations (abbreviated as ΔCO<sub>2</sub>) at Point Barrow, Alaska to climate in 1979–2009.

    No full text
    <p>(A) The relationships between ΔCO<sub>2</sub> and the growing season temperature. (B) The relationships between ΔCO<sub>2</sub> and the growing season precipitation. The dotted lines were produced from linear regressions of ΔCO<sub>2</sub> versus the growing season temperature and precipitation, which are not significant at a level of p<0.05 (p = 0.75 and p = 0.94, respectively). The growing season temperature and precipitation were averaged over the NH north of 30°N.</p
    corecore