22 research outputs found

    Error Analysis of a Fully Discrete Projection Method for Magnetohydrodynamic System

    Get PDF
    In this paper, we develop and analyze a finite element projection method for magnetohydrodynamics equations in Lipschitz domain. A fully discrete scheme based on Euler semi-implicit method is proposed, in which continuous elements are used to approximate the Navier–Stokes equations and H(curl) conforming Nédélec edge elements are used to approximate the magnetic equation. One key point of the projection method is to be compatible with two different spaces for calculating velocity, which leads one to obtain the pressure by solving a Poisson equation. The results show that the proposed projection scheme meets a discrete energy stability. In addition, with the help of a proper regularity hypothesis for the exact solution, this paper provides a rigorous optimal error analysis of velocity, pressure and magnetic induction. Finally, several numerical examples are performed to demonstrate both accuracy and efficiency of our proposed scheme

    Medical dispatch decision support for transfer time estimation: Individual operator differences in system use

    No full text
    Medical dispatchers use estimates of patient transfer times to inform dispatch decisions, and decision support tools that assist with time estimation may lead to improved patient outcomes. However, individual differences between medical dispatchers may result in variances in how these tools are used in practice. A study was conducted to explore how individual difference factors such as numeracy ability, impulsiveness, and venturesomeness are associated with different time prediction strategies when using decision support tools that display historical transfer time information. It was found that individuals did exhibit different time prediction strategies, and some of the variance in behavior could be explained by differences in numeracy and impulsiveness. These preliminary results suggest caution when designing support tools, especially when the target population has large variability in terms of numeracy and impulsiveness characteristics.We would like to thank Mitacs, Ornge, and the Natural Sciences and Engineering Research Council of Canada for their funding and support

    An ultrasound transient elastography system with coded excitation

    No full text
    Abstract Background Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it’s application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. Methods The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. Results The elasticity QA phantom’s results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7–chip Barker coded excitation. Conclusions Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice

    Synergy between Ionic Liquids and CuCl2 in Gas–Liquid Phase Reactions of Acetylene Hydrochlorination

    No full text
    We studied the acetylene hydrochlorination in gas–liquid phase reactions using ionic liquids (IL) as the reaction media and CuCl2 as the catalyst. The Cu-IL catalyst showed strong synergy between the IL and the Cu(II) active catalytic species. For [PrMIm]Cl, the Cu-IL catalyst exhibited significant enhancement of the catalytic activity in comparison with the CuCl2 catalyst supported on activated carbon and the IL alone as the catalyst. We have also performed DFT calculations of the reaction process, which provides a good explanation of our experimental results and for the synergetic effect. Our result suggests that ILs may be used to improve the activity of other metallic catalysts for the hydrochlorination reaction of acetylene

    Zeolite Supported Ionic Liquid Catalysts for the Hydrochlorination of Acetylene

    No full text
    An efficient and stable heterogeneous Zeolite Supported Ionic Liquid Catalyst (IL/CaX) has been explored in acetylene hydrochlorination reaction. The IL/CaX catalyst exhibits excellent space time yields of vinyl chloride (VCM), when compared to the benchmark of Au/C systems. Through characterization and kinetic studies, the reaction follows a two-site mechanism, which is described as the adsorbed hydrogen chloride on the Ca2+ in zeolite, reacting with the adsorbed acetylene on the cation of ionic liquid to form vinyl chloride. The catalytic reaction takes place at the IL/CaX interface, whilst the upper interphase IL/CaX is not active. The deactivation of the catalyst is caused by the dissolving byproducts in the ionic liquid layer, which can be reactivated by a simple vacuum procedure. It is of great significance to study and develop green non-mercury catalysts, in acetylene hydrochlorination

    Highly Active AuCu-Based Catalysts for Acetylene Hydrochlorination Prepared Using Organic Aqua Regia

    No full text
    Development of a sustainable process for designing and synthesising an active and stable catalyst for hydrochlorination of acetylene is challenging, yet crucial, for industrial vinyl chloride monomer (VCM) production. Herein, direct synthesis of bimetallic AuCu catalysts using organic aqua regia (OAR) preparation methods was investigated. In comparison with conventional aqua regia (AR), bimetallic AuCu catalysts synthesised from OAR exhibit enhanced activity and stability. After careful characterisation of the catalyst samples using X-ray diffraction patterns (XRD), Scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), and Temperature-programmed desorption (TPD), this observation was justified for the following reasons: 1) the existence of sulphur and nitrogen atoms stabilised the cationic Au active sites, and 2) OAR helped to sustain the function of the Cu promotor by stabilising it. Advanced understanding on the importance of promoter stability has unveiled new perspectives for this research area

    Size-Dependent Halogenated Nitrobenzene Hydrogenation Selectivity of Pd Nanoparticles

    No full text
    The selective hydrogenation of halogenated nitrobenzene (HNB) has been a great important chemical reaction in the fine chemical productions. In this study, the effect of metal particle size on the selective hydrogenation of HNB over Pd/C catalysts has been extensively investigated through the combination of theoretical (density functional theory calculations, DFT) and experimental methods. DFT calculations showed that the reaction barriers for dechlorination strongly depend on the type of reaction sites (terrace or edge), while the hydrogenation reaction barriers are nearly the same on different sites, which indicates that Pd nanoparticle size significantly affects the catalyst selectivity. Moreover, Pd nanoparticles with different sizes (from 2.1 to 30 nm) supported on activated carbon were synthesized using the methods developed by our group. In a 500 mL reactor, the selectivity is over 99.90% when the Pd nanoparticles are bigger than 25 nm. Finally, the industrial applications of the proposed catalyst were evaluated in several pilot factories. This study provides useful information on controlling the selectivity of other similar reactions catalyzed by noble-metal nanocatalysts

    Iron-Based Catalysts with Oxygen Vacancies Obtained by Facile Pyrolysis for Selective Hydrogenation of Nitrobenzene

    No full text
    The development of preparation strategies for iron-based catalysts with prominent catalytic activity, stability, and cost effectiveness is greatly significant for the field of catalytic hydrogenation but still remains challenging. Herein, a method for the preparation of iron-based catalysts by the simple pyrolysis of organometallic coordination polymers is described. The catalyst Fe@C-2 with sufficient oxygen vacancies obtained in specific coordination environment exhibited superior nitro hydrogenation performance, acid resistance, and reaction stability. Through solvent effect experiments, toxicity experiments, TPSR, and DFT calculations, it was determined that the superior activity of the catalyst was derived from the contribution of sufficient oxygen vacancies to hydrogen activation and the good adsorption ability of FeO on substrate molecules
    corecore