317 research outputs found

    Protective Effects of Lycium barbarum

    Get PDF
    To observe the effects of Lycium barbarum polysaccharides (LBP) on testis spermatogenic injuries induced by Bisphenol A (BPA) in mice. BPA was subcutaneously injected into mice at a dose of 20 mg/kg body weight (BW) for 7 consecutive days. LBP was administered simultaneously with BPA by gavage daily at the dose of 50, 100, and 200 mg/kg BW for 7 days. After treatment, the weight and the histopathology changes of testis and epididymis were examined; the contents of T, LH, GnRH, antioxidant enzyme, and malondialdehyde (MDA) in serum were detected; proapoptotic protein Bax and antiapoptotic protein Bcl-2 were also detected by immunohistochemical method. Results showed that the weights of testis and epididymis were all increased after supplement with different dosages of LBP compared with BPA group, and the activities of SOD and GSH-Px were significantly increased in LBP groups, while MDA contents were gradually decreased. Moreover, the levels of T, LH, and GnRH were significantly elevated in serum treated with 100 mg/kg LBP. LBP also shows significant positive effects on the expression of Bcl-2/Bax in BPA treated mice. It is concluded that LBP may be one of the potential ingredients protecting the adult male animals from BPA induced reproductive damage

    Variations in growth traits and wood physicochemical properties among Pinus koraiensis families in Northeast China

    Get PDF
    This study aimed to explore and improve the different economic values of Pinus koraiensis (Siebold and Zucc.) by examining the variations in 6 growth traits and 9 physicochemical wood properties among 53 P. koraiensis half-sib families. Growth traits assessed included height, diameter at breast height, volume, degree of stem straightness, stem form, and branch number per node, while wood properties assessed included density, fiber length and width, fiber length to width ratio, and cellulose, hemicellulose, holocellulose, lignin, and ash contents. Except for degree of stem straightness and branch number per node, all other traits exhibited highly significant variations (P < 0.01) among families. The coefficients of variation ranged from 5.3 (stem form) to 66.7% (ash content), whereas, the heritability ranged from 0.136 (degree of stem straightness) to 0.962 (ash content). Significant correlations were observed among growth traits and wood physicochemical properties. Principal component analysis identified four distinct groups representing growth traits, wood chemical and physical properties, and stem form traits. Multi-trait comprehensive evaluation identified three groups of elite families based on breeding objectives, including rapid growth, improved timber production for building and furniture materials, and pulpwood production. These specific families should be used to establish new plantations

    Morphological growth performance and genetic parameters on Korean pine in Northeastern China

    Get PDF
    Korean pine (Pinus koraiensis) is an economically valuable species owing to its excellent timber quality and nuts useful for various purposes. But few studies have been made on growth performance, and aspects combining the genetic gain and classification method on phenotypic similarity in the selection process of superior families. Thus, the present study aimed at analyzing the genetic variation and highlight suitable morphological traits for family selection; establishing trait correlations and families' ordination based on similarities in phenotypic characters, and selecting elite families and suitable parent trees. Full-sib families from 28 crosses established in randomized complete block design from Naozhi orchard in Northeast China were used, and 11 morphological traits were investigated. Significant differences were observed among families for all traits. The traits coefficients of variation ranged from 6.07 to 56.25 % and from 0.029 to 15.213 % in phenotype and genotypic variation, respectively. A moderate level of inherited genetic control was observed (broad sense heritability H-2, varied from 0.155 to 0.438). Traits related to stem growth were highly positively correlated to each other whereas crown traits showed a weak correlation with stem traits (Pearson correlation r, ranged from -0.161 to 0.956). Based on multi-trait comprehensive analysis, we selected six elite families and six parents, which resulted in a genetic gain of 5.6 %, 16.9 %, and 36.4 % in tree height, diameter at breast height, and volume, respectively. These results make a theoretical basis for selecting excellent families and establish orchards of Korean pine from improved seeds

    Polarization description of successive ferroelectric switching in hafnia

    Full text link
    Intertwined ionic conduction and ferroelectric (FE) switching in HfO2 lead to extensive focuses. To describe its fundamental phenomena, we present a free-energy model describing the potential of ferroelectrics with successive FE switching paths, and extend the domain model of ionic conduction to ferroelectric domains. Associate theoretical analyses and first-principles calculations suggest a nesting-domain pattern with opposite piezoelectric loops during the nucleation-and-growth process in displacive FE-HfO2. A collective oxygen ion conduction mechanism is also proposed with a field-dependent ionic conductivity following the Merz's law. We conclude that the ionic conductibility is concomitant with the ferroelectricity in HfO2, and it may provide a new venue for pursuing low temperature fast oxide-ion conductors and artificial synapses.Comment: 26 page

    Metabolome and Transcriptome Analyses Unravels Molecular Mechanisms of Leaf Color Variation by Anthocyanidin Biosynthesis in Acer triflorum

    Get PDF
    Acer triflorum Komarov is an important ornamental tree, and its seasonal change in leaf color is the most striking feature. However, the quantifications of anthocyanin and the mechanisms of leaf color change in this species remain unknown. Here, the combined analysis of metabolome and transcriptome was performed on green, orange, and red leaves. In total, 27 anthocyanin metabolites were detected and cyanidin 3-O-arabinoside, pelargonidin 3-O-glucoside, and peonidin 3-O-gluside were significantly correlated with the color development. Several structural genes in the anthocyanin biosynthesis process, such as chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR), were highly expressed in red leaves compared to green leaves. Most regulators (MYB, bHLH, and other classes of transcription factors) were also upregulated in red and orange leaves. In addition, 14 AtrMYBs including AtrMYB68, AtrMYB74, and AtrMYB35 showed strong interactions with the genes involved in anthocyanin biosynthesis, and, thus, could be further considered the hub regulators. The findings will facilitate genetic modification or selection for further improvement in ornamental qualities of A. triflorum

    Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine

    Get PDF
    Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs

    Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change

    Get PDF
    Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding

    Genome-Wide Identification of NAC Transcription Factor Family in Juglans mandshurica and Their Expression Analysis during the Fruit Development and Ripening

    Get PDF
    The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family

    Dynamic Changes in Dietary Guideline Adherence and Its Association with All-Cause Mortality among Middle-Aged Chinese: A Longitudinal Study from the China Health and Nutrition Survey

    Get PDF
    The traditional approach to evaluating dietary quality is based on the achievement of the recommended intakes for each food group, which may overlook the achievement of correct relative proportions between food groups. We propose a “Dietary Non-Adherence Score (DNAS)” to assess the degree of similarity between subjects’ diets and those recommended in the Chinese Dietary Guidelines (CDG). Furthermore, it is important to incorporate the time-dependent nature of dietary quality into mortality prediction. This study investigated the association between long-term changes in adherence to the CDG and all-cause mortality. This study included 4533 participants aged 30–60 from the China Health and Nutrition Survey study with a median follow-up of 6.9 years. Intakes from 10 food groups were collected in 5 survey rounds from 2004 to 2015. We calculated the Euclidean distance between the intake of each food and the CDG-recommended intake, and then summed all the food groups as DNAS. Mortality was assessed in 2015. Latent class trajectory modeling was used to identify three classes of participants with distinct longitudinal trajectories of DNAS during the follow-up period. The Cox proportional hazard model was used to assess the risk of all-cause mortality in the three classes of people. Risk factors for death and confounders for diets were sequentially adjusted in the models. There were 187 deaths overall. Participants in the first class identified had consistently low and decreasing DNAS levels (coefficient = −0.020) over their lifetime, compared with a hazard ratio (HR) of 4.4 (95% confidence interval [CI]: 1.5, 12.7) for participants with consistently high and increasing DNAS levels (coefficient = 0.008). Those with moderate DNAS had an HR of 3.0 (95% CI: 1.1, 8.4). In summary, we find that people with consistently high adherence to CDG-recommended dietary patterns had a significantly lower mortality risk. DNAS is a promising method to assess diet quality
    corecore