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Atherosclerosis is the leading cause of numerous cardiovascular diseases with a
high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not
encode proteins in human genome transcripts, are known to play crucial roles
in various physiological and pathological processes. Recently, researches on the
regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-
coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional
Chinese medicine has been proved to be effective in treating cardiovascular
diseases in China for a long time, and its active monomers have been found to
target a variety of atherosclerosis-related ncRNAs. These active monomers of
traditional Chinese medicine hold great potential as drugs for the treatment of
atherosclerosis. Here, we summarized current advancement of the molecular
pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the
mechanisms of traditional Chinese medicine monomers in regulating
atherosclerosis through targeting ncRNAs.
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1 Introduction

Atherosclerosis is characterized by fibro-fat lesions on the walls of arteries with
extremely high morbidity and mortality rate (Libby et al., 2019). Atherosclerosis is
considered to be an important pathological basis for cerebrovascular and cardiovascular
diseases such as cerebral infarction, coronary heart disease andmyocardial infarction (Libby,
2021). There are many causes of atherosclerosis, such as inflammatory reactions (Zhu et al.,
2018), cell death and aging (Bazioti et al., 2022), and endothelial to mesenchymal transition
(Liang et al., 2022), among which chronic inflammation is the reason that has been
frequently studied in the past few years. At the molecular level, telomere damage,
genomic DNA damage, and mitochondrial DNA damage accumulate in vascular
endothelial cells, which induce endothelial cell aging and chronic inflammation.
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Persistent inflammation results in increased accumulation of
lymphocytes and macrophages, leading to atherosclerosis
(Wang and Bennett, 2012; Okuyama et al., 2015; Ruparelia
and Choudhury, 2020). The pathogenesis and therapeutic
targets of atherosclerosis have long been the focus in the field
of cardiovascular researches. Statins, inhibitors of the
hydroxymethylglutaryl-CoA (HMG-CoA) reductase enzyme,
are powerful cholesterol lowering medications and the most
commonly used clinical drugs for the prevention and
treatment of atherosclerosis (Okuyama et al., 2015). Statins
can reduce morbidity and mortality in patients with
cardiovascular diseases. However, statins may affect the drug-
drug interactions because different safety and tolerability,
especially when in combination with other cardiovascular
drugs, which will lead to increased risk of statin-associated
hepatotoxicity and myopathy (Bellosta and Corsini, 2018).
Therefore, it is urgent to discover new therapeutic targets and
new drugs for atherosclerosis.

RNAs in mammalian cells are complex, some of which have
the function of encoding proteins, but some of which lack this
function. At present, the RNAs that lack the function of encoding
proteins are named as non-coding RNAs (ncRNAs), of which the
most studied are microRNAs (miRNAs), long non-coding RNAs
(lncRNAs), and circular RNAs (circRNAs) (Lu and Rothenberg,

2018; Chen et al., 2021a; Bridges et al., 2021). NcRNAs have been
proved to play important regulatory roles in pathogenesis of
atherosclerosis through affecting inflammatory reaction, cell
activation and proliferation, and lipid metabolism (Feinberg
and Moore, 2016; Aryal and Suarez, 2019). Nowadays,
therapeutic strategies targeting ncRNAs have entered the
clinical testing phase for the treatment of cancers and have
been considered as an attractive approach for the treatment of
atherosclerosis.

Since ancient times, numerous herbal medicines have been used
for the treatment of atherosclerosis-related diseases and decoction is
the main form of traditional Chinese medicine used in clinic. With
the development of separation technology, it has become possible to
separate more pharmacologically active monomers from traditional
Chinese medicine. This allows researchers to conduct
pharmacological studies on the specific monomers rather than
the whole of medicinal plants. At present, studies have found
that many active monomers of traditional Chinese medicine have
positive effects on atherosclerosis, such as saponins (Luo et al.,
2022), flavonoids (Park et al., 2006) and alkaloids (Li et al., 2021d).
For example, berberine, an active ingredient extracted from Berberis
aristata DC., can activate PPAR-γ pathway in macrophages,
resulting in decreased expressions of inflammatory factors like
monocyte chemoattractant protein-1 (MCP-1) and tumor
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necrosis factor-α (TNF-α) (Chen et al., 2008). Another study found
that hydroxysafflor yellow A, a natural compound from Carthamus
tinctorius L., exerts protective effects on atherosclerosis by
suppressing vascular endothelial cell dysfunction, vascular
smooth muscle cell proliferation and migration, foam cell
formation, and platelet activation (Xue et al., 2021). These active
monomers of traditional Chinese medicine are predicted to have
high therapeutic potential in atherosclerosis treatment. However,
the specific drug targets of these active ingredient are not fully
understood, which limits clinical application.

Recently, more and more studies have found that ncRNAs are
the key mediators of the pharmacological effect of traditional
Chinese medicine. Here, we summarized current advances of
mechanisms of ncRNAs in regulating atherosclerosis.
Furthermore, we highlighted the current advances in the active
monomers of traditional Chinese medicine which have
atheroprotective effects by regulating ncRNAs.

2 The role of ncRNAs in regulating
atherosclerosis

2.1 miRNAs and atherosclerosis

MiRNAs (typically 20–25 nucleotides) are single-stranded RNA
molecules that can bind to complementary sequences within the 3′
untranslated region of mRNA targets. Once the miRNA binds to the
mRNA, it can degrade the mRNA via cleavage or inhibit the
translation of mRNAs into proteins (Winter et al., 2009; Thum
and Mayr, 2012). MiRNAs are the most studied ncRNAs in
atherosclerosis and have been shown to regulate the fate and

function of atherosclerosis associated cells, including endothelial
cells, inflammatory cells, and vascular smooth muscle cells
(VSMCs). MiRNAs can affect endothelial cell function by
exacerbating senescence of endothelial cells, which is considered
as a key mechanism of atherosclerosis (Menghini et al., 2009; Fiedler
and Thum, 2016). There are many miRNAs involved in the
regulation of endothelial cell senescence, such as miR-146a and
miR-217 (Wang et al., 2021; Xiao et al., 2021). Studies have found
that mesenchymal stem cell-derived extracellular vesicles attenuate
endothelial cell senescence by regulating miR-146a/Src signaling
(Xiao et al., 2021). MiR-217 can also promote endothelial cell
senescence through the SIRT1/p53 signaling pathway (Wang
et al., 2021). In addition, miRNAs can control the inflammatory
state of the vasculature by affecting leukocyte activation and
infiltration (Perez-Sanchez et al., 2017; Pankratz et al., 2018). In
the setting of atherosclerosis, miR-126 promotes macrophage
polarization to the M2 phenotype by downregulating VEGFA
and krüppel-like factor 4 (KLF4) (Shou et al., 2023). MiRNAs
have also been shown to affect foam cell formation and
subsequent plaque formation (Eken et al., 2017; Maitrias et al.,
2017). MiR-302a has been shown to promote the formation of foam
cells and increase the outflow of cholesterol in macrophage by
increasing ATP-binding cassette transporter A1 (ABCA1) activity
(Meiler et al., 2015). In addition, the function of VSMCs can also be
regulated by miRNAs. For example, miR-146b-5p reduces the
expression of its target genes Bag1 and Mmp16, thereby affecting
the proliferation and migration of VSMCs during atherosclerosis
(Sun et al., 2020). A study also found that miR-374 may be a
potential biomarker for the diagnosis of atherosclerosis, and
overexpression of miR-374 promotes the proliferation and
migration of VSMCs (Wang et al., 2020b). MiR-663 can target

FIGURE 1
The main hazards of atherosclerosis. The atherosclerosis is the main cause of coronary heart disease, cerebral infarction, and peripheral vascular
disease.
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TABLE 1 Active monomers of traditional Chinese medicine and their ncRNA targets.

Active
monomers

ncRNA Target
genes

Related hallmark Model References

Geniposide miR-101 MKP-1 Inhibits inflammation In vivo: ApoE−/− mice Cheng et al. (2019)

In vitro: RAW264.7

miR-21 PTEN Inhibits inflammation and oxidative stress In vitro: HUVECs Zhou et al. (2020)

Astragaloside IV circ-
0000231

miR-135a-5p Inhibits apoptosis, inflammation, and oxidative
stress; Promotes the viability and migration ability

In vitro: HUVECs Shao et al. (2021)

miR-33a ABCA1 Promotes the outflow of cholesterol In vivo: ApoE−/− mice Qin et al. (2018)

In vitro: THP-1

miR-17-5p PCSK9/
VLDLR

Inhibits inflammation In vivo: ApoE−/− mice Qin et al. (2022)

In vitro: VSMCs

lncRNA
H19

DUSP5 Inhibits autophagy and mineralization In vivo: ApoE−/− mice C57BL/6J
mice

Song et al. (2019)

In vitro: HASMCs

Notoginsenoside R1 miR-147a MyD88 Inhibits inflammation and oxidative stress In vitro: HUVECs Li and Huang (2021)

miR-
221-3p

TLR4 Inhibits apoptosis, inflammation, and oxidative stress In vitro: HUVECs Zhu et al. (2020)

miR-34a SIRT1 Delays aging In vitro: HUVECs Lai et al. (2018)

Tanshinone IIA miR-130b WNT5A Inhibits inflammation and adipogenesis In vitro: THP-1 Yuan et al. (2020)

miR-
712-5p

? Inhibits inflammation and cell proliferation In vitro: VSMCs Qin et al. (2020)

miR-375 KLF4 Enhances autophagy and M2 polarization of
macrophages

In vivo: ApoE−/− mice Chen et al. (2019a)

In vitro: RAW264.7

miR-21-5p TPM1 Inhibits proliferation and migration In vitro: HASMCs Jia et al. (2019)

Salvianolic acid B miR-146a ? Inhibits proliferation In vivo: Carotid bifurcation ligated
mice

Zhao et al. (2019)

In vitro: VSMCs

Tanshinol lncRNA
TUG1

miR-26a Inhibits apoptosis In vivo: ApoE−/− mice Chen et al. (2016)

In vitro: HAECs, ECV304 cells

Genkwanin miR-101 MKP-1 Inhibits inflammation In vitro: RAW264.7 Gao et al. (2014)

Dihydromyricetin miR-21 DDAH1 Increases NO production and weakens endothelial
dysfunction

In vivo: ApoE−/− mice Yang et al. (2018), Yang
et al. (2020)

In vitro: HUVECs, THP-1

Sulforaphane miR-34a SIRT1 Reduces oxidative stress In vitro: HUVECs Li et al. (2021c)

Cyanidin-3-O-
glucoside

miR-
204-5p

SIRT1 Inhibits inflammation and apoptosis In vivo: Rabbit model of HFD +
balloon catheter injury

Wang et al. (2020c)

In vitro: HUVECs

Baicalin miR-
126-5p

HMGB1 Inhibits proliferation and migration ex vivo:Blood of atherosclerosis
patients and healthy people

Chen et al. (2019b)

In vitro: VSMCs

Curcumin lncRNA
MIAT

EZH2 Inhibits inflammation In vivo: ApoE−/− mice Ouyang et al. (2022)

In vitro: HUVECs

miR-
125a-5p

SIRT6 Promotes cholesterol efflux In vitro: THP-1 Tan et al. (2021)

(Continued on following page)
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high mobility group AT-hook 2 (HMGA2) to inhibit the
proliferation of VSMCs, thereby delaying the development of
atherosclerosis (Deng and Li, 2022). In conclusion, miRNAs
regulate atherosclerosis through affecting the function of
endothelial cells, macrophages, and VSMCs.

2.2 lncRNAs and atherosclerosis

LncRNAs are ncRNAs longer than 200 nucleotides (Di Mauro
et al., 2018), which are abnormally expressed in many pathological
tissues (Li et al., 2020; Zang et al., 2020). Unlike miRNAs, the actions
of lncRNAs are relatively complex. LncRNA can be a source of
miRNA. For example, miR-31 gene is embedded within an intron of
the lncRNA LOC554202 and its transcription is regulated by the
methylation state of the host gene promoter (Augoff et al., 2012).
Morover, lncRNAs can bind to DNA, mRNA and proteins to
regulate their expressions or functions (Guttman and Rinn,
2012). The most widely known mechanism is the competitive
endogenous RNA (ceRNA), in which way lncRNA acts as a
negative regulator of miRNA (Salmena et al., 2011). In recent
years, studies have shown that lncRNAs are dynamically
expressed in developing and diseased blood vessels, suggesting

that lncRNAs have profound biological functions in
atherosclerosis (Guo et al., 2019; Simion et al., 2020). LncRNAs
can regulate atherosclerosis by influencing the function of vascular
cells. For example, lncRNAHOXA11-AS is significantly upregulated
in aortic tissue of atherosclerotic mice and oxidized low-density
lipoprotein (ox-LDL)-induced endothelial cells. HOXA11-AS
knockdown attenuates endothelial injuries by directly regulating
the miR-515-5p/ROCK1/eNOS axis (Gao et al., 2022). In addition to
endothelial cells, lncRNA also plays a role in atherosclerosis by
affecting VSMCs and macrophages. For example, lncRNA
TUG1 can promote the proliferation of VSMCs by regulating the
miRNA-21/PTEN axis (Li et al., 2018b). LncRNA MAARS interacts
with HuR to increase macrophage apoptosis in the blood vessels
(Simion et al., 2020). What’s more, lncRNA kcnq1ot1 can compete
with miR-452-3p to promote macrophage lipid accumulation and
accelerate the development of atherosclerosis (Yu et al., 2020a).

2.3 circRNAs and atherosclerosis

CircRNAs are closed circular molecules, which distinguishes
them from other linear RNA molecules. CircRNAs were originally
considered as by-products of mRNA cleavage, but now they are

TABLE 1 (Continued) Active monomers of traditional Chinese medicine and their ncRNA targets.

Active
monomers

ncRNA Target
genes

Related hallmark Model References

EGCG miR-33a ABCA1 Promotes cholesterol efflux In vitro: THP-1 Yang et al. (2016)

Ginsenoside Rb2 miR-216a Smad3 Inhibits inflammation and aging In vitro: HUVECs, HAECs Chen et al. (2021b)

Paeonol miR-223 STAT3 Inhibits inflammation In vivo: ApoE−/− mice Liu et al. (2018)

In vitro: HUVECs, THP-1

miR-223 ? Inhibits inflammation In vivo: SD rats Shi et al. (2020)

In vitro: RAECs

miR-126 VCAM-1 Inhibits monocyte adhesion to endothelial cells In vivo: SD rats Yuan et al. (2016)

In vitro: VECs isolated from the
thoracic aorta of rats

miR-21 PTEN Inhibits inflammation In vivo: SD rats Liu et al. (2014)

In vitro: VECs isolated from the
thoracic aorta of rats

miR-30a Beclin-1 Inhibits autophagy In vivo: SD rats Li et al. (2018a)

In vitro: VECs isolated from the
thoracic aorta of rats

miR-
338-3p

TET2 Inhibiting apoptosis, inflammation, and oxidative
stress

In vitro: VECs isolated from the
thoracic aorta of mice

Yu et al. (2020b)

Puerarin miR-
29b-3p

IGF1 Inhibits inflammation and proliferation In vivo: ApoE−/− mice Li et al. (2023)

In vitro: hVSMCs

MKP-1, mitogen-activated protein kinase phosphatase 1; PTEN, phosphatase and tensin homolog, ABCA1 ATP-binding cassette transporter A1, PCSK9 proprotein convertase subtilisin/kexin

type 9, VLDLR, very low-density lipoprotein receptor, KLF4 krüppel-like factor 4, DUSP5 dual specificity phosphatase 5, MyD88 myeloid differentiation primary response 88, TLR4 toll-like

receptor 4, SIRT1 sirtuin-1, p53 tumor protein 53, WNT5A wingless/integrated-5A, TPM1 tropomyosin 1, DDAH1 dimethylarginine dimethylaminohydrolase 1, HMGB1 high mobility group

box 1 protein, EZH2 enhancer of zeste homolog 2, Smad3 sma- and mad-related protein 3, STAT3 signal transducer and activator of transcription 3,VCAM-1, Vascular cell adhesion molecule-

1, IGF1 insulin-like growth factor 1, ApoE−/−mice apolipoprotein e-knockout mice, RAW264.7 RAW, 264.7 mouse leukemia macrophage cell line, HUVECs, human umbilical vein endothelial

cells; THP-1, human acute monocytic leukemia cell line; VSMCs, vascular smoothmuscle cells; HASMCs, human aortic vascular smoothmuscle cells; HAEC, human aortic endothelial cells; SD,

rats sprague-dawley rats; RAECs, rat aortic endothelial cells; VECs, vascular endothelial cells; hVSMCs, human vascular smooth muscle cells, TET2 tet methylcytosine dioxygenase 2.
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thought to be stable and functional ncRNAs (Chen, 2016).
Compared to miRNAs, circRNAs are less studied ncRNAs in
atherosclerosis. Still, there are studies that have shown circRNAs
can regulate the fate and function of atherosclerosis-associated cells,
including endothelial cells, macrophages, and VSMCs. As with
lncRNAs, circRNAs can also compete with miRNAs as ceRNAs,
which is the mostly investigated mechanism (Ren et al., 2021). In
endothelial cells, a study demonstrated that circ-RELL1 plays a pro-
inflammatory role in endothelial cells by directly binding to miR-
6873-3p and subsequently activating NF-κB signaling pathway
(Huang et al., 2020). Circ_0086296 induces aberrant endothelial
cell phenotypes by spongesizing miR-576-3p, resulting in severe
atherosclerotic lesions (Zhang et al., 2022). In VSMCs, circRNA-
0044073 promotes the proliferation and invasion of VSMCs by
targeting miR-107 and activating the JAK/STAT signaling pathway
(Shen et al., 2019). In macrophages, overexpression of circ_
0004104 results in dysregulation of atherosclerosis-related genes
in THP-1-derived macrophages (Wang et al., 2019). It is noticed that
the role of circRNAs in atherosclerosis has rarely been studied,
which may become a research hotspot in the future.

Since the role of ncRNAs in atherosclerosis is emerging, they
have been considered as potential drug targets in developing
therapeutic agents. As we know, traditional Chinese medicine has
a long history of treating atherosclerosis in China. In particular,
studies have shown that the monomers extracted from traditional
Chinese medicine are the main functional components that possess
anti-atherosclerotic activity, and these activities can be mediated by
ncRNAs.

3 Active monomers of traditional
Chinese medicine relieve
atherosclerosis by regulating ncRNAs

Nowadays, the researches about the regulation of atherosclerosis
by active monomers of traditional Chinese medicine are
tremendous. However, the drug targets of traditional Chinese
medicine remain unclear, which affects the clinical application of
these medicine. It is clear that ncRNAs appear to be important
players during atherosclerosis and important targets of traditional
Chinese medicine. Therefore, it is particularly important to discover
the mechanism by which the active monomers of traditional
Chinese medicine relieve atherosclerosis through ncRNAs.

3.1 Geniposide

Geniposide, an iridoid glucoside, is the main active ingredient of
Gardenia jasminoides J. Ellis. Geniposide exhibits a variety of anti-
inflammatory and anti-oxidative functions and has good therapeutic
effects on cardiovascular diseases (Fu et al., 2012b). A study has
found that geniposide treatment reduces lipid levels and plaque size
in the mouse model of atherosclerosis. Mechanistically, geniposide
downregulates miR-101 to upregulate mitogen-activated protein
kinase phosphatase-1 (MKP-1) and suppresses the production of
inflammatory factors in macrophages (Cheng et al., 2019). MiR-21
has been shown to play an important role in regulating
inflammatory responses by targeting phosphatase and tensin

FIGURE 2
Active monomers of traditional Chinese medicine improve the occurrence and development of atherosclerosis through regulating ncRNAs in
endothelial cells. PTEN phosphatase and tensin homolog deleted on chromosome ten, VCAM-1 Vascular cell adhesion molecule-1, TLR4 toll-like
receptor 4, MyD88 myeloid differentiation primary response 88, TRAF6 TNF receptor-associated factor 6, NF-κB nuclear factor kappa-B, SIRT1 sirtuin-1,
DDAH1 dimethylarginine dimethylaminohydrolase 1, EZH2 enhancer of zeste homolog 2, p53 tumor protein p53, Smad3 sma- and mad-related
protein 3, STAT3 signal transducer and activator of transcription 3, TET2 tet methylcytosine dioxygenase 2.
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homolog (PTEN) (Sheedy, 2015; Li et al., 2022). A study established
a endothelial cell injury model by using ox-LDL and found
geniposide protects endothelial cells from ox-LDL-induced injury
by inhibiting oxidative stress and inflammation, and these effects are
partly due to the enhancement of the miR-21/PTEN pathway (Zhou
et al., 2020). Taken together, miR-101 and miR-21 are involved in
the anti-inflammatory effect of geniposide in the setting of
atherosclerosis.

3.2 Astragaloside IV

Astragaloside IV is a saponin isolated from Astragalus
membranaceus (Fisch.) Bunge, which has excellent cardioprotective
effects (Tan et al., 2020). Astragaloside IV has been reported to
protect endothelial cells from oxidative damage caused by ox-LDL
through regulating the LOX-1/NLRP3 signaling pathway (Qian et al.,
2019a). Recently, a study found that circ_0000231 is the key downstream
target of astragaloside IV,which regulatesmiR-135a-5p to target chloride
intracellular channel 4 (CLIC4), and contributes to the protective role of
astragaloside IV in ox-LDL-induced endothelial cell injury (Shao et al.,
2021). CLIC4 is also a protein associated with endothelial cell apoptosis
(Zhang et al., 2020b), indicating astragaloside IV may also inhibit
endothelial cell apoptosis by regulating CLIC4 through circ_0000231.
Several miRNAs have been shown to be the targets of astragaloside IV.
For example, astragaloside IV can protect cardiomyocytes fromhypoxia-
induced injury by downregulating miR-23a and miR-92a (Gong et al.,
2018). ABCA1, a membrane transporter that mediates cholesterol efflux
(Chen et al., 2022), has been proved to be a target of miR-33a (Gao et al.,

2018). A study has found that astragaloside IV can promote cholesterol
efflux in macrophages and inhibit atherosclerosis through regulating
miR-33a/ABCA1 pathway (Qin et al., 2018). The serum miR-17-5p is
elevated in patients with atherosclerosis and miR-17-5p knockdown can
alleviate atherosclerotic lesions and inhibit the proliferation and
migration of VSMCs by directly up-regulating very low density
lipoprotein receptor (VLDLR), or indirectly regulate VLDLR by
affecting proprotein convertase subtilisin kexin 9 (PCSK9) (Tan
et al., 2017). Astragaloside IV has been shown to downregulate
miR-17-5p and further affect VLDLR expression, thus inhibiting
vascular inflammation (Qin et al., 2022). In addition, lncRNA
H19 has also been reported to mediate astragaloside IV’s anti-
atherosclerotic effect. H19 negatively regulates dual-specificity
phosphatase 5 (DUSP5) expression and represses DUSP5/ERK1/
2 axis (Tao et al., 2016). Astragaloside IV could attenuate
autophagy and mineralization of VSMCs in atherosclerosis by
up-regulating H19 and inhibiting DUSP5 (Song et al., 2019). In
summary, astragaloside IV can regulate the function of
endothelial cells, VSMCs, and macrophages in atherosclerosis
by targeting multiple miRNAs, lncRNAs and circRNAs.
Therefore, it can be expected that astragaloside IV can exert
an excellent anti-atherosclerotic effect through ncRNAs in the
clinic.

3.3 Notoginsenoside R1

Notoginsenoside R1, the monomer extracted from Panax
notoginseng (Burkill) F.H.Chen, has a unique effect of promoting

FIGURE 3
Active monomers of traditional Chinese medicine improve the occurrence and development of atherosclerosis through regulating ncRNAs in
macrophages. MKP-1 mitogen-activated protein kinase phosphatase 1, ABCA1 ATP-binding cassette transporter A1, WNT5A wingless/integrated-5A,
KLF4 krüppel-like factor 4, SIRT6 sirtuin 6.
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blood circulation and has been used on clinical treatment of
cardiovascular diseases (Lei et al., 2022). Myeloid differentiation
primary response gene 88 (MyD88) is an important
immunoregulatory factor, and studies have found that inhibiting
MyD88 has a good effect on diabetes (Androulidaki et al., 2018).
Notoginsenoside R1 was found to relieve high glucose-induced
endothelial cell inflammation and oxidative stress by
downregulating the MyD88 via up-regulating miR-147a (Li and
Huang, 2021). The Toll-like receptor 4 (TLR4)/Nuclear factor-κB
(NF-κB) pathway participates in oxidative stress and induces
atherosclerosis in ApoE−/− mice by up-regulating inflammatory
cytokines (Tang et al., 2015). A study revealed that
notoginsenoside R1 could upregulate the expression of miR-221-
3p to target TLR4/NF-κB pathway, thereby inhibiting ox-LDL-
induced endothelial cell apoptosis, oxidative stress, and
inflammation (Zhu et al., 2020). Notoginsenoside R1 may also
play a role in delaying senescence of endothelial cells.
Notoginsenoside R1 can decrease the expressions of miR-34a and
p53, while increase the expression of SIRT1, thus enhancing the
intracellular superoxide dismutase (SOD) activity and cell
proliferation capacity in hydrogen peroxide-induced endothelial
cell aging model (Lai et al., 2018). These studies suggest that
notoginsenoside R1 has a strong and multifaceted endothelial
protective effect through regulating ncRNAs.

3.4 Tanshinone IIA, salvianolic acid B,
tanshinol

Tanshinone, extracted from the traditional Chinese medicine
Salvia miltiorrhiza Bunge, is a fat-soluble phenanthrene quinone
compound with bacteriostatic effect (Wang et al., 2017). Among
tanshinone, tanshinone IIA has been clinically proved to have a
more significant effect on cardiovascular diseases, especially its

anti-inflammatory effect on macrophages. Tanshinone IIA
reduces the production of inflammatory factors and
adipogenesis in macrophages by up-regulating miR-130b and
downregulating WNT5A, thereby relieving the development of
atherosclerosis (Yuan et al., 2020). Previous studies have
demonstrated that miR-712 is involved in atherosclerosis-
related pathological processes, such as VSMCs calcification
and endothelial cell inflammation (Son et al., 2013).
Tanshinone IIA can inhibit VSMCs inflammation and
proliferation by inhibiting miR-712-5p (Qin et al., 2020).
KLF4, an evolutionarily conserved zinc-finger-containing
transcription factor, is thought to induce M2 and inhibit
M1 macrophage polarization (Liao et al., 2011). A study found
that the miR-375/KLF4 pathway plays a dominant role in
macrophage polarization and autophagy, and tanshinone IIA
could activate KLF4 by inhibiting miR-375, leading to
enhanced autophagy as well as M2 polarization of
macrophages (Chen et al., 2019a). Tropomyosin 1 (TPM1), as
a target gene for miR-21-5p (Baker, 2011), is involved in the
formation, stabilization and regulation of cytoskeletal actin fibers
(Gunning et al., 2015). It was found that tanshinone IIA could
downregulate miR-21-5p and then target TPM1, which helps to
inhibit the proliferation and migration of VSMCs (Jia et al.,
2019).

Salvianolic acid B, a water-soluble compound extracted from S.
miltiorrhiza Bunge, has been used to treat cardiovascular diseases for
hundreds of years. MiR-146a is involved in the regulation of cell
proliferation, migration, differentiation, and apoptosis (Cheng et al.,
2013). A study has found that salvianolic acid B can inhibit
angiotensin II-induced VSMCs proliferation and improve carotid
artery ligation-induced neointimal hyperplasia by downregulating
miR-146a (Zhao et al., 2019).

Tanshinol is also an active ingredient isolated from S.
miltiorrhiza Bunge which has the effect of protecting vascular

FIGURE 4
Active monomers of traditional Chinese medicine improve the occurrence and development of atherosclerosis through regulating ncRNAs in
vascular smooth muscle cells. DUSP5 dual specificity phosphatase 5, PCSK9 proprotein convertase subtilisin/kexin type 9, TPM1 tropomyosin 1,
IGF1 insulin-like growth factor 1, HMGB1 high mobility group box 1 protein, VLDLR very low-density lipoprotein receptor.
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endothelium and reducing atherosclerosis (Song et al., 2014). MiR-
26a has been proved to have anti-apoptotic effect on endothelial cells
(Zhang et al., 2015). A study found that tanshinol inhibits apoptosis

of endothelial cells and reduces atherosclerotic lesions via decreasing
lncRNA TUG1 and increasing miR-26a in endothelial cells (Chen
et al., 2016).

FIGURE 5
Structural formula of active monomers of traditional Chinese medicine that exhibit anti-atherosclerotic activities.
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3.5 Genkwanin

Genkwanin is one of the major non-glycosylated flavonoids
extracted from Daphne genkwa Siebold & Zucc. (Bao et al., 2019).
MKP-1 is a key negative regulator of macrophage signaling in
response to inflammatory stimulis and is responsible for shutting
down the production of pro-inflammatory cytokines (Chen et al.,
2002; Chi et al., 2006). Genkwanin was proved to potently decrease
the production of proinflammatory mediators through
downregulating miR-101 and increasing MKP-1 (Gao et al., 2014).

3.6 Dihydromyricetin

Dihydromyricetin, a bioactive flavonoid isolated from
Ampelopsis cantoniensis var. grossedentata Hand. -Mazz. and
Ziziphus jujuba Mill., has been found to have a wide range of
pharmacological activities, such as anti-inflammatory (Sun et al.,
2021), analgesic (Guan et al., 2019), anti-tumor (Chen et al., 2020)
and hepatoprotective effects (Silva et al., 2020). Nitric oxide (NO),
produced by endothelial nitric oxide synthase (eNOS), plays a key
role in maintaining endothelial function, and impaired NO
biosynthesis is a hallmark of atherosclerosis (Tousoulis et al.,
2012; Cyr et al., 2020). There is evidence that overexpression of
dimethylarginine dimethylaminohydrolase-1 (DDAH1) increases
NO production through an asymmetric dimethylarginine
(ADMA) manner (Pope et al., 2009). Studies suggested that
dihydromyricetin treatment inhibits atherosclerotic lesion
formation by increasing NO production by endothelial cells.
MiR-21 expression can be reduced by dihydromyricetin in
endothelial cells, which increases DDAH1 and reduces ADMA
levels (Yang et al., 2018; Yang et al., 2020). Taken together,
dihydromyricetin activates endothelial DDAH1/ADMA/eNOS/
NO pathway by reducing miR-21, which relieves the
pathogenesis of atherosclerosis.

3.7 Sulforaphane

Sulforaphane is an isothiocyanate, which is produced by the
conversion of glucoraphanin through the myrosinase (Vanduchova
et al., 2019). Sulforaphane, a potent antioxidant, is primarily found
in several Brassicaceae vegetables, such as broccoli, cauliflower,
cabbage, and Brussels sprouts. Sulforaphane has often been
shown to protect cells from oxidative stress in cardiomyocytes
and neural cells (Guerrero-Beltran et al., 2012). The nuclear
factor erythroid-2-related factor 2 (Nrf2), a basic leucine zipper
transcription factor that serves as a defense mechanism against
oxidative stress, has been shown to be activated by sulforaphane (Bai
et al., 2015; Houghton et al., 2016). SIRT1 is a potential target gene of
miR-34a (Yamakuchi et al., 2008) and the role of the miR-34a/
SIRT1 axis in oxidative stress-induced cellular damage has been
demonstrated (Guo et al., 2017). Sulforaphane was found to protect
endothelial cells from oxidative stress by regulating the miR-34a/
SIRT1 axis through upregulation of Nrf2 (Li et al., 2021c). In
addition, a study found that sulforaphane can reduce
lipopolysaccharide-induced cell damage and oxidative stress by
inhibiting miR-155 in microglia (Eren et al., 2018). MiR-155 was

proved to aggravate the carotid atherosclerotic lesion through
induction of endothelial cell apoptosis and activation of
inflammasome in macrophages (Yin et al., 2019b). Therefore, it
is possible that sulforaphane may limit the formation of
atherosclerotic lesions by inhibiting miR-155, but clearly, more
studies are needed to confirm this hypothesis.

3.8 Cyanidin-3-O-glucoside

Anthocyanins are abundant natural water-soluble pigments,
which are relatively rich in the skin of Glycine max (L.) Merr.
These compounds have been shown to exert antioxidant and anti-
inflammatory properties (Zhang et al., 2020a). Cyanidin-3-O-
glucoside is one of the most abundant anthocyanins in nature. A
study found that cyanidin-3-O-glucoside treatment not only
suppresses blood lipids, but also improves endothelial cell
function in a rabbit atherosclerotic model. Mechanistically, these
effects are due to decreased expression of miR-204-5p, which leads
to the increased expression of SIRT1 and enhanced endothelial cell
function (Wang et al., 2020c).

3.9 Baicalin

Baicalin, one of the flavonoid compounds, is the main active
component of traditional Chinese medicine Scutellaria baicalensis
Georgi (Li et al., 2009). It has been shown that baicalin can alleviate
the development of atherosclerosis through its anti-adipogenic, anti-
inflammatory and antioxidant effects (Wu et al., 2018). The
expression of miR-126 was found to be reduced in the peripheral
blood of atherosclerotic patients (Jiang et al., 2014). High mobility
group box 1 protein (HMGB1) is an essential facilitator of
atherosclerosis by enhancing inflammation (Boteanu et al., 2017).
It has been found that baicalin induces the upregulation of miR-126-
5p and the downregulation of HMGB1, inhibiting ox-LDL-induced
proliferation and migration of VSMCs (Chen et al., 2019b).

3.10 Curcumin

Curcumin is the main active ingredient of Curcuma longa L. and
is mainly extracted from dried powdered turmeric. There is evidence
that curcumin can modulate the inflammatory response and
alleviate inflammatory diseases like atherosclerosis (Hasan et al.,
2014; Chen et al., 2015). Studies found that the activatedmiR-126-3p
from endothelial cells and VSMCs plays a key role in reducing
vascular calcification (Zeng et al., 2021) and curcumin upregulates
miR-126-3p expression (Li et al., 2021b). Therefore, we infer that
miR-126-3p may be one of the targets of curcumin in the treatment
of atherosclerosis. LncRNA MIAT has been shown to aggravate the
atherosclerotic damage through the activation of PI3K/Akt signaling
pathway (Sun et al., 2019). A study found that reduced expression of
MIAT contributes to the protective effect of curcumin on
atherosclerosis. MIAT regulates miR-124 by interacting with
enhancer of zeste homolog 2 (EZH2), thereby relieving
inflammation in endothelial cells (Ouyang et al., 2022). In
addition, curcumin markedly suppresses miR-125a-5p and
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upregulates SIRT6 in macrophages, thereby regulating the
ABCA1 expression and promoting cholesterol efflux of
macrophages (Tan et al., 2021).

3.11 Epigallocatechin gallate

Epigallocatechin gallate (EGCG) is the most abundant catechin
in green tea. EGCG has been shown to has various pharmacological
effects including the anti-atherosclerotic effect, which is primarily
achieved by promoting intracellular cholesterol efflux in
macrophages (Jiang et al., 2012). Recent studies showed that
miR-33a is an upstream regulator of ABCA1 (Wijesekara et al.,
2012) and EGCG exerts anti-atherosclerotic effect by reducing miR-
33a, thereby upregulating ABCA1 and promoting the efflux of
cholesterol in macrophages (Yang et al., 2016).

3.12 Ginsenoside Rb2

Ginsenoside Rb2, extracted from Panax ginseng C.A. Mey., is a
commonly used traditional Chinese medicine with antioxidant
(Huang et al., 2014), anti-inflammatory (Huang et al., 2017) and
anti-apoptotic activities (Gao et al., 2015). In macrophages,
ginsenoside Rb2 has been found to exert anti-inflammatory
effects by upregulating the expression of an ω-3 fatty acid
receptor GPR120 (Huang et al., 2017). A recent study showed
that ginsenoside Rb2 can also inhibit endothelial senescence and
inflammation. Mechanistically, ginsenoside Rb2 has a specific
binding affinity for miR-216a and further attenuates miR-216a-
induced inflammatory processes and aging states through the
Smad3/IκBα signaling pathway (Chen et al., 2021b).

3.13 Paeonol

Paeonol is one of the main active compounds in Tree Peony
Bark, which has been found to have anti-inflammatory, anti-
thrombotic and antioxidant properties (Fu et al., 2012a; Bao
et al., 2013). Paeonol could increase the expression of miR-223 in
macrophage-derived exosomes, and after the uptaking of exosomes
by endothelial cells, the STAT3 signaling and the related
inflammatory response in endothelial cells can be attenuated (Liu
et al., 2018). Another study also found similarly protective results of
paeonol on endothelial cells in hyperlipidemia-induced
atherosclerosis, which is also attributed to cellular uptake of
exosomal miR-223 (Shi et al., 2020). Additionally, paeonol also
promotes miR-126 expression to inhibit monocyte adhesion to
endothelial cells and block the activation of the PI3K/Akt/NF-κB
signaling pathway (Yuan et al., 2016). Moreover, miR-21 and its
target PTEN also contribute to the protective effects of paeonol on
ox-LDL-induced endothelial injury (Liu et al., 2014). MiR-338-3p
was proved to be increased in atherosclerotic lesions, and paeonol
treatment could downregulates the expression of miR-338-3p and
upregulates the expression of Tet methylcytosine dioxygenase 2
(TET2), thereby relieving ox-LDL-induced endothelial cell damage
(Yin et al., 2019a; Yu et al., 2020b). Paeonol can also weaken ox-
LDL-induced endothelial autophagy through regualting miR-30a/

beclin-1 signaling (Li et al., 2018a). Overall, these studies indicate
that paeonol has strong endothelial protective effects, which is
associated with regulation of various miRNAs and their targets.

3.14 Puerarin

Pueraria lobata is the dried roots of legumes P. lobata (Willd.)
Ohwi and Pueraria thunbergiana (Siebold & Zucc.) Benth. It is
clinically used in the treatment of cardiovascular and
cerebrovascular diseases (Wang et al., 2020a). Puerarin, an active
monomer in Pueraria lobata, was reported to inhibit the
proliferation and inflammation of VSMCs in atherosclerosis by
reducing the expression of miR-29b-3p, thereby increasing the
expression of insulin-like growth factor 1 (IGF1) (Li et al., 2023).
Therefore, puerarin may have a beneficial effect in the treatment of
atherosclerosis by regulating miRNA.

4 Conclusion and prospects

Atherosclerosis is a major cause of coronary heart disease,
cerebral infarction, and some peripheral vascular diseases
(Figure 1). With the improvement of living standards, the
incidence and mortality of atherosclerosis-induced
cardiovascular diseases have increased rapidly in recent years.
During the development of atherosclerosis, abnormal
expressions of ncRNAs affect the physiological functions of
endothelial cells, macrophages, and VSMCs by regulating
related signaling pathways or specific proteins. China has a
long history of using herbal medicine to treat cardiovascular
diseases and the anti-atheroscleroic effects of several herbal
medicine are also demonstrated in animal experiments and
human studies. The traditional Chinese medicine monomers
have recently attracted more attention in the treatment of
diseases because they have certain molecular structures,
predicted pharmacological effects, less drug-drug interactions,
and clear mechanisms of action. Many active monomers derived
from traditional Chinese medicines have been evaluated in vivo
and in vitro to ameliorate the development of atherosclerosis by
targeting ncRNAs. This article reviews 16 active monomers in
traditional Chinese medicine that can improve the development
of atherosclerosis by targeting ncRNAs in endothelial cells,
macrophages, and VSMCs (Table 1; Figures 2–4). Their
structures are shown in Figure 5. Besides monomeric Chinese
herbal extracts, Chinese herbal formulas and decoctions have also
been proved to treat atherosclerosis by targeting ncRNAs. For
example, Tongxinluo Capsule inhibits vascular inflammation and
neointimal hyperplasia by inhibiting the expression of miR-155,
thereby blocking the feedback loop between miR-155 and TNF-α
(Zhang et al., 2014). Alismatis rhizoma decoction, a classic
traditional Chinese Medicinal formula used for the treatment
of cardiovascular and cerebrovascular diseases, can inhibit the
expression of ERK1/2 and miR-17~92a to inhibit ox-LDL-
stimulated VSMCs proliferation (Shen et al., 2020). Among
the ncRNAs regulated by active monomers of traditional
Chinese medicine, miRNAs are the most studied. However,
whether traditional Chinese medicine can exert functions via
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regulating lncRNAs, circRNAs or other ncRNAs is not well
studied and requires more research.

NcRNAs are the most abundant transcripts in cells. In
addition to seaching ncRNAs from published papers, we can
identify or screen new ncRNAs in the following ways: firsty, we
can utilize publicly available genomic and transcriptomic
databases, such as Ensembl, NCBI, and UCSC to identify
regions of the genome that are transcribed but not coding for
proteins, indicating potential ncRNAs; additionally, high-
throughput sequencing like RNA-Seq can be used to identify
novel transcripts, including potential ncRNAs; furthermore, we
can also compare the genomic sequences across various species in
order to find conserved non-coding regions, which may
potentially serve as ncRNAs; besides, machine learning
algorithms based on sequence features and structural
properties of ncRNAs can also be used to predict potential
novel ncRNAs. After discovering new ncRNAs, techniques like
CRISPR/Cas9, RNA interference, qRT-PCR, Northern blotting,
in situ hybridization and other functional assays can be used to
identify the specific biological functions of the ncRNAs. It can be
expected that future studies will find more and more ncRNAs that
related to atherosclerosis and these ncRNAs can be used as drug
targets for development of anti-atherosclerotic drugs.

Over the past decades, substantial effort has been made towards
the clinical application of RNA-based therapeutics, such as small
interfering RNAs and antisense oligonucleotides. However, since the
hurdle of immunogenicity, specificity, and delivery, some studies
demonstrated limited efficacy or toxicity of ncRNAs-based
therapies. Therefore, traditional Chinese medicine may become
alternative drugs by targeting ncRNAs to treat atherosclerosis. It
is worth noting that most studies suggest that traditional Chinese
medicine treats atherosclerosis by targeting a specific ncRNA.
However, the mechanism of ceRNA suggests that ncRNAs may
have complex interactions in cells. What’s more, a ncRNA may also
have multiple targets. Therefore, we should further explore the anti-
atherosclerotic mechanisms and clinical safety of these traditional
Chinese medicine in more detail. It is hoped that by studying the
regulation of ncRNAs by traditional Chinese medicine, it will
provide theoretical support for the future research and clinical
application of traditional Chinese medicine for treatment of
atherosclerosis.

While many traditional Chinese medicines have therapeutic
effects on atherosclerosis, some research has also identified
potential side effects of certain Chinese herbs that can
exacerbate atherosclerosis. For example, a moderate dosage of
marijuana proves highly efficient in alleviating chronic pain
(Carter et al., 2015), but marijuana can also cause
cardiovascular side effects, such as endothelial dysfunction
and atherosclerosis (Feng et al., 2022). Proanthocyanidin
A1 can promotes the production of platelets to ameliorate
chemotherapy-induced thrombocytopenia (Wang et al., 2022)

and TMEA, a polyphenol in Sanguisorba officinalis L., can
facilitate megakaryocyte differentiation and platelet production
(Li et al., 2021a). However, the increased platelets can raise the
risk of blood clot formation in patients with atherosclerosis
(Barrett et al., 2019). Therefore, when patients have
concurrent atherosclerosis, the use of these Chinese herbal
medicines should be avoided. Furthermore, studying the
ncRNAs that may mediate these effects is of significant
importance, but this field is still lacking in research and
requires further investigation.
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Glossary

ABCA1 ATP-binding cassette transporter A1

ADMA Asymmetric dimethylarginine

ApoE−/− mice Apolipoprotein e-knockout mice

ceRNA Competitive endogenous RNA

circRNAs Circular RNAs

CLIC4 Chloride intracellular channel 4

DDAH1 Dimethylarginine dimethylaminohydrolase-1

DUSP5 Dual-specificity phosphatase 5

EGCG Epigallocatechin gallate

eNOS Endothelial nitric oxide synthase

EZH2 Enhancer of zeste homolog 2

HAEC Human aortic endothelial cells

HASMCs Human airway smooth muscle cells

HA-VSMCs Human aortic vascular smooth muscle cells

HMGA2 High mobility group AT-hook 2

HMGB1 High mobility group box 1 protein

HMG-CoA Hydroxymethylglutaryl-CoA

HUVECs Human umbilical vein endothelial cells

hVSMCs Human vascular smooth muscle cells

IGF1 Insulin-like growth factor 1

KLF4 Krüppel-like factor 4

lncRNAs Long non-coding RNAs

MCP-1 Monocyte chemoattractant protein 1

miRNAs MicroRNAs

MKP-1 Mitogen-activated protein kinase phosphatase-1

MyD88 Myeloid differentiation primary response gene 88

ncRNAs Non-coding RNAs

NF-κB Nuclear factor-κB

NO Nitric oxide

Nrf2 Nuclear factor erythroid-2-related factor 2

ox-LDL Oxidized low-density lipoprotein

p53 Tumor protein 53

PCSK9 Proprotein convertase subtilisin kexin 9

PTEN Phosphatase and tensin homolog

RAECs Rat aortic endothelial cells

RAW264.7 RAW 264.7 mouse leukemia macrophage cell line

SD rats Sprague-dawley rats

SIRT1 Sirtuin 1

SIRT6 Sirtuin 6

Smad3 Sma- and mad-related protein 3

SOD Superoxide dismutase

STAT3 Signal transducer and activator of transcription 3

TET2 Tet methylcytosine dioxygenase 2

THP-1 Human acute monocytic leukemia cell line

TLR4 Toll-like receptor 4

TNF-α Tumor necrosis factor-α

TPM1 Tropomyosin 1

TRAF6 TNF receptor-associated factor 6

VCAM-1 Vascular cell adhesion molecule-1

VECs Vascular endothelial cells

VLDLR Very low-density lipoprotein receptor

VSMCs Vascular smooth muscle cells
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