1,441 research outputs found

    Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass

    Full text link
    A metamaterial slab of anisotropic mass with one diagonal component being infinity and the other being zero is demonstrated to behave as a superlens for acoustic imaging beyond the diffraction limit. The underlying mechanism for extraordinary transmission of evanescent waves is attributed to the zero mass effect. Microstructure design for such anisotropic lens is also presented. In contrast to the anisotropic superlens based on Fabry-P\'erot resonant mechanism, the proposed lens operates without the limitation on lens thickness, thus more flexible in practical applications. Numerical modeling is performed to validate the proposed ideas.Comment: 4 figure

    Optimal output consensus for linear systems: A topology free approach

    Get PDF
    In this paper, for any homogeneous system of agents with linear continuous time dynamics, we formulate an optimal control problem. In this problem a convex cost functional of the control signals of the agents shall be minimized, while the outputs of the agents shall coincide at some given finite time. This is an instance of the rendezvous or finite time consensus problem. We solve this problem without any constraints on the communication topology and provide a solution as an explicit feedback control law for the case when the dynamics of the agents is output controllable. It turns out that the communication graph topology induced by the solution is complete. Based on this solution for the finite time consensus problem, we provide a solution to the case of infinite time horizon. Furthermore, we investigate under what circumstances it is possible to express the controller as a feedback control law of the output instead of the states.Comment: 8 page

    Malliavin calculus for backward stochastic differential equations and application to numerical solutions

    Get PDF
    In this paper we study backward stochastic differential equations with general terminal value and general random generator. In particular, we do not require the terminal value be given by a forward diffusion equation. The randomness of the generator does not need to be from a forward equation, either. Motivated from applications to numerical simulations, first we obtain the LpL^p-H\"{o}lder continuity of the solution. Then we construct several numerical approximation schemes for backward stochastic differential equations and obtain the rate of convergence of the schemes based on the obtained LpL^p-H\"{o}lder continuity results. The main tool is the Malliavin calculus.Comment: Published in at http://dx.doi.org/10.1214/11-AAP762 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore