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In this paper we study backward stochastic differential equations
with general terminal value and general random generator. In par-
ticular, we do not require the terminal value be given by a forward
diffusion equation. The randomness of the generator does not need
to be from a forward equation, either. Motivated from applications
to numerical simulations, first we obtain the L

p-Hölder continuity
of the solution. Then we construct several numerical approximation
schemes for backward stochastic differential equations and obtain the
rate of convergence of the schemes based on the obtained L

p-Hölder
continuity results. The main tool is the Malliavin calculus.

1. Introduction. The backward stochastic differential equation (BSDE,
for short) we shall consider in this paper takes the following form:

Yt = ξ +

∫ T

t
f(r,Yr,Zr)dr−

∫ T

t
Zr dWr, 0≤ t≤ T,(1.1)

where W = {Wt}0≤t≤T is a standard Brownian motion, ξ is the given ter-
minal value and f is the given (random) generator. To solve this equation
is to find a pair of adapted processes Y = {Yt}0≤t≤T and Z = {Zt}0≤t≤T

satisfying the above equation (1.1).
Linear backward stochastic differential equations were first studied by

Bismut [3] in an attempt to solve some optimal stochastic control problem
through the method of maximum principle. The general nonlinear backward
stochastic differential equations were first studied by Pardoux and Peng [15].
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Since then there have been extensive studies of this equation. We refer to
the review paper by El Karoui, Peng and Quenez [7], to the books of El
Karoui and Mazliak [6] and of Ma and Yong [12] and the references therein
for more comprehensive presentation of the theory.

A current important topic in the applications of BSDEs is the numerical
approximation schemes. In most work on numerical simulations, a certain
forward stochastic differential equation of the following form:

Xt =X0 +

∫ t

0
b(r,Xr, Yr)dr+

∫ t

0
σ(r,Xr)dWr(1.2)

is needed. Usually it is assumed that the generator f in (1.1) depends on Xr

at the time r: f(r,Yr,Zr) = f(r,Xr, Yr,Zr), where f(r, x, y, z) is a determin-
istic function of (r, x, y, z), and f is global Lipschitz in (x, y, z). If in addition
the terminal value ξ is of the form ξ = h(XT ), where h is a deterministic
function, a so-called four-step numerical scheme has been developed by Ma,
Protter and Yong in [11]. A basic ingredient in this paper is that the so-
lution {Yt}0≤t≤T to the BSDE is of the form Yt = u(t,Xt), where u(t, x) is
determined by a quasi-linear partial differential equation of parabolic type.
Recently, Bouchard and Touzi [4] propose a Monte-Carlo approach which
may be more suitable for high-dimensional problems. Again in this forward–
backward setting, if the generator f has a quadratic growth in Z, a numerical
approximation is developed by Imkeller and Dos Reis [9] in which a trunca-
tion procedure is applied.

In the case where the terminal value ξ is a functional of the path of the
forward diffusion X , namely, ξ = g(X·), different approaches to construct
numerical methods have been proposed. We refer to Bally [1] for a scheme
with a random time partition. In the work by Zhang [16], the L2-regularity
of Z is obtained, which allows one to use deterministic time partitions as well
as to obtain the rate estimate (see Bender and Denk [2], Gobet, Lemor and
Warin [8] and Zhang [16] for different algorithms). We should also mention
the works by Briand, Delyon and Mémin [5] and Ma et al. [10], where the
Brownian motion is replaced by a scaled random walk.

The purpose of the present paper is to construct numerical schemes for
the general BSDE (1.1), without assuming any particular form for the termi-
nal value ξ and generator f . This means that ξ can be an arbitrary random
variable, and f(r, y, z) can be an arbitrary Fr-measurable random variable
(see Assumption 2.2 in Section 2 for precise conditions on ξ and f ). The
natural tool that we shall use is the Malliavin calculus. We emphasize that
the main difficulty in constructing a numerical scheme for BSDEs is usually
the approximation of the process Z. It is necessary to obtain some regular-
ity properties for the trajectories of this process Z. The Malliavin calculus
turns out to be a suitable tool to handle these problems because the random
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variable Zt can be expressed in terms of the trace of the Malliavin derivative
of Yt, namely, Zt =DtYt. This relationship was proved in the paper by El
Karoui, Peng and Quenez [7] and was used by these authors to obtain esti-
mates for the moments of Zt. We shall further exploit this identity to obtain
the Lp-Hölder continuity of the process Z, which is the critical ingredient
for the rate estimate of our numerical schemes.

Our first numerical scheme was inspired by the paper of Zhang [16],
where the author considers a class of BSDEs whose terminal value ξ takes
the form g(X·), where X is a forward diffusion of the form (1.2), and g
satisfies a Lipschitz condition with respect to the L∞ or L1 norms (simi-
lar assumptions for f ). The discretization scheme is based on the regular-
ity of the process Z in the mean square sense; that is, for any partition
π = {0 = t0 < t1 < · · ·< tn = T}, one obtains

n−1∑

i=0

E

∫ ti+1

ti

[|Zt −Zti |
2 + |Zt −Zti+1 |

2]dt≤K|π|,(1.3)

where |π|=max0≤i≤n−1(ti+1 − ti), and K is a constant independent of the
partition π.

We consider the case of a general terminal value ξ which is twice differen-
tiable in the sense of Malliavin calculus, and the first and second derivatives
satisfy some integrability conditions; we also made similar assumptions for
the generator f (see Assumption 2.2 in Section 2 for details). In this sense
our framework extends that of [13] and is also natural. In this framework,
we are able to obtain an estimate of the form

E|Zt −Zs|
p ≤K|t− s|p/2,(1.4)

where K is a constant independent of s and t. Clearly, (1.4) with p = 2
implies (1.3). Moreover, (1.4) implies the existence of a γ-Hölder continuous
version of the process Z for any γ < 1

2 − 1
p . Notice that, up to now the

path regularity of Z has been studied only when the terminal value and the
generator are functional of a forward diffusion.

After establishing the regularity of Z, we consider different types of nu-
merical schemes. First we analyze a scheme similar to the one proposed
in [16] [see (3.2)]. In this case we obtain a rate of convergence of the follow-
ing type:

E sup
0≤t≤T

|Yt − Y π
t |2 +

∫ T

0
E|Zt −Zπ

t |
2 dt≤K(|π|+ E|ξ − ξπ|2).

Notice that this result is stronger than that in [16] which can be stated as
(when ξπ = ξ)

sup
0≤t≤T

E|Yt − Y π
t |2 +

∫ T

0
E|Zt −Zπ

t |
2 dt≤K|π|.
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We also propose and study an “implicit” numerical scheme [see (4.1) in
Section 4 for the details]. For this scheme we obtain a much better result on
the rate of convergence,

E sup
0≤t≤T

|Yt − Y π
t |p +E

(∫ T

0
|Zt −Zπ

t |
2 dt

)p/2

≤K(|π|p/2 +E|ξ − ξπ|p),

where p > 1 depends on the assumptions imposed on the terminal value and
the coefficients.

In both schemes, the integral of the process Z is used in each iteration,
and for this reason they are not completely discrete schemes. In order to
implement the scheme on computers, one must replace an integral of the
form

∫ ti+1

ti
Zπ
s ds by discrete sums, and then the convergence of the obtained

scheme is hardly guaranteed. To avoid this discretization we propose a truly
discrete numerical scheme using our representation of Zt as the trace of the
Malliavin derivative of Yt (see Section 5 for details). For this new scheme,
we obtain a rate of convergence result of the form

E max
0≤i≤n

{|Yti − Y π
ti |

p + |Zti −Zπ
ti |

p} ≤K|π|p/2−ε

for any ε > 0. In fact, we have a slightly better rate of convergence (see
Theorem 5.2),

E max
0≤i≤n

{|Yti − Y π
ti |

p + |Zti −Zπ
ti |

p} ≤K|π|p/2−p/(2 log(1/|π|))

(
log

1

|π|

)p/2

.

However, this type of result on the rate of convergence applies only to some
classes of BSDEs, and thus this scheme remains to be further investigated.

In the computer realization of our schemes or any other schemes, an ex-
tremely important procedure is to compute the conditional expectation of
form E(Y |Fti). In this paper we shall not discuss this issue but only mention
the papers [2, 4] and [8].

The paper is organized as follows. In Section 2 we obtain a representa-
tion of the martingale integrand Z in terms of the trace of the Malliavin
derivative of Y , and then we get the Lp-Hölder continuity of Z by using
this representation. The conditions that we assume on the terminal value ξ
and the generator f are also specified in this section. Some examples of ap-
plication are presented to explain the validity of the conditions. Section 3
is devoted to the analysis of the approximation scheme similar to the one
introduced in [16]. Under some differentiability and integrability conditions
in the sense of Malliavin calculus on ξ and the nonlinear coefficient f , we
establish a better rate of convergence for this scheme. In Section 4, we in-
troduce an “implicit” scheme and obtain the rate of convergence in the Lp

norm. A completely discrete scheme is proposed and analyzed in Section 5.
Throughout the paper for simplicity we consider only scalar BSDEs. The

results obtained in this paper can be easily extended to multi-dimensional
BSDEs.
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2. The Malliavin calculus for BSDEs.

2.1. Notations and preliminaries. Let W = {Wt}0≤t≤T be a one-dimen-
sional standard Brownian motion defined on some complete filtered proba-
bility space (Ω,F , P,{Ft}0≤t≤T ). We assume that {Ft}0≤t≤T is the filtration
generated by the Brownian motion and the P -null sets, and F = FT . We
denote by P the progressive σ-field on the product space [0, T ]×Ω.

For any p≥ 1 we consider the following classes of processes:

• M2,p, for any p≥ 2, denotes the class of square integrable random variables
F with a stochastic integral representation of the form

F = EF +

∫ T

0
ut dWt,

where u is a progressively measurable process satisfying sup0≤t≤T E|ut|
p <

∞.
• Hp

F ([0, T ]) denotes the Banach space of all progressively measurable pro-
cesses ϕ : ([0, T ]×Ω,P)→ (R,B) with norm

‖ϕ‖Hp =

(
E

(∫ T

0
|ϕt|

2 dt

)p/2)1/p

<∞.

• Sp
F ([0, T ]) denotes the Banach space of all the RCLL (right continuous

with left limits) adapted processes ϕ : ([0, T ]×Ω,P)→ (R,B) with norm

‖ϕ‖Sp =
(
E sup

0≤t≤T
|ϕt|

p
)1/p

<∞.

Next, we present some preliminaries on Malliavin calculus, and we refer
the reader to the book by Nualart [14] for more details.

Let H= L2([0, T ]) be the separable Hilbert space of all square integrable
real-valued functions on the interval [0, T ] with scalar product denoted by
〈·, ·〉H. The norm of an element h ∈ H will be denoted by ‖h‖H. For any

h ∈H we put W (h) =
∫ T
0 h(t)dWt.

We denote by C∞
p (Rn) the set of all infinitely continuously differentiable

functions g :Rn →R such that g and all of its partial derivatives have poly-
nomial growth. We make use of the notation ∂ig =

∂g
∂xi

whenever g ∈C1(Rn).
Let S denote the class of smooth random variables such that a random

variable F ∈ S has the form

F = g(W (h1), . . . ,W (hn)),(2.1)

where g belongs to C∞
p (Rn), h1, . . . , hn are in H and n≥ 1.

The Malliavin derivative of a smooth random variable F of the form (2.1)
is the H-valued random variable given by

DF =
n∑

i=1

∂ig(W (h1), . . . ,W (hn))hi.
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For any p ≥ 1 we will denote the domain of D in Lp(Ω) by D
1,p, meaning

that D
1,p is the closure of the class of smooth random variables S with

respect to the norm

‖F‖1,p = (E|F |p + E‖DF‖p
H
)1/p.

We can define the iteration of the operator D in such a way that for a smooth
random variable F , the iterated derivative DkF is a random variable with
values in H

⊗k. Then for every p ≥ 1 and any natural number k ≥ 1 we
introduce the seminorm on S defined by

‖F‖k,p =

(
E|F |p +

k∑

j=1

E‖DjF‖p
H⊗j

)1/p

.

We will denote by D
k,p the completion of the family of smooth random

variables S with respect to the norm ‖ · ‖k,p.
Let µ be the Lebesgue measure on [0, T ]. For any k ≥ 1 and F ∈D

k,p, the
derivative

DkF = {Dk
t1,...,tk

F, ti ∈ [0, T ], i= 1, . . . , k}

is a measurable function on the product space [0, T ]k ×Ω, which is defined
a.e. with respect to the measure µk × P .

We use L
1,p
a to denote the set of real-valued progressively measurable

processes u= {ut}0≤t≤T such that:

(i) For almost all t ∈ [0, T ], ut ∈D
1,p.

(ii) E((
∫ T
0 |ut|

2 dt)p/2 + (
∫ T
0

∫ T
0 |Dθut|

2 dθ dt)p/2)<∞.

Notice that we can choose a progressively measurable version of theH-valued
process {Dut}0≤t≤T .

2.2. Estimates on the solutions of BSDEs. The generator f in the BSDE
(1.1) is a measurable function f : ([0, T ]×Ω×R× R,P ⊗ B ⊗ B)→ (R,B),
and the terminal value ξ is an FT -measurable random variable.

Definition 2.1. A solution to the BSDE (1.1) is a pair of progressively

measurable processes (Y,Z) such that
∫ T
0 |Zt|

2 dt<∞,
∫ T
0 |f(t, Yt,Zt)|dt<∞,

a.s. and

Yt = ξ +

∫ T

t
f(r,Yr,Zr)dr−

∫ T

t
Zr dWr, 0≤ t≤ T.

The next lemma provides a useful estimate on the solution to the BSDE (1.1).
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Lemma 2.2. Fix q ≥ 2. Suppose that ξ ∈ Lq(Ω), f(t,0,0) ∈ Hq
F ([0, T ])

and f is uniformly Lipschitz in (y, z); namely, there exists a positive num-
ber L such that µ× P a.e.

|f(t, y1, z1)− f(t, y2, z2)| ≤ L(|y1 − y2|+ |z1 − z2|)

for all y1, y2 ∈ R and z1, z2 ∈ R. Then there exists a unique solution pair
(Y,Z) ∈ Sq

F ([0, T ]) ×Hq
F ([0, T ]) to (1.1). Moreover, we have the following

estimate for the solution:

E sup
0≤t≤T

|Yt|
q + E

(∫ T

0
|Zt|

2 dt

)q/2

(2.2)

≤K

(
E|ξ|q + E

(∫ T

0
|f(t,0,0)|2 dt

)q/2)
,

where K is a constant depending only on L, q and T .

Proof. The proof of the existence and uniqueness of the solution (Y,Z)
can be found in [7], Theorem 5.1, with the local martingale M ≡ 0, since the
filtration here is the filtration generated by the Brownian motion W . Esti-
mate (2.2) can be easily obtained from Proposition 5.1 in [7] with (f1, ξ1) =
(f, ξ) and (f2, ξ2) = (0,0). �

As we will see later, for a given BSDE the process Z will be expressed in
terms of the Malliavin derivative of the solution Y , which will satisfy a linear
BSDE with random coefficients. To study the properties of Z we need to
analyze a class of linear BSDEs.

Let {αt}0≤t≤T and {βt}0≤t≤T be two progressively measurable processes.
We will make use of the following integrability conditions:

Assumption 2.1.

(H1) For any λ > 0,

Cλ := E exp

(
λ

∫ T

0
(|αt|+ β2

t )dt

)
<∞.

(H2) For any p≥ 1,

Kp := sup
0≤t≤T

E(|αt|
p + |βt|

p)<∞.

Under condition (H1), we denote by {ρt}0≤t≤T the solution of the linear
stochastic differential equation{

dρt = αtρt dt+ βtρt dWt, 0≤ t≤ T ,
ρ0 = 1.

(2.3)

The following theorem is a critical tool for the proof of the main theorem
in this section, and it has also its own interest.
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Theorem 2.3. Let q > p≥ 2 and let ξ ∈ Lq(Ω) and f ∈Hq
F ([0, T ]). As-

sume that {αt}0≤t≤T and {βt}0≤t≤T are two progressively measurable pro-
cesses satisfying conditions (H1) and (H2) in Assumption 2.1. Suppose that

the random variables ξρT and
∫ T
0 ρtft dt belong to M2,q, where {ρt}0≤t≤T is

the solution to (2.3). Then the following linear BSDE,

Yt = ξ +

∫ T

t
[αrYr + βrZr + fr]dr−

∫ T

t
Zr dWr, 0≤ t≤ T,(2.4)

has a unique solution pair (Y,Z), and there is a constant K > 0 such that

E|Yt − Ys|
p ≤K|t− s|p/2(2.5)

for all s, t ∈ [0, T ].

We need the following lemma to prove the above result.

Lemma 2.4. Let {αt}0≤t≤T and {βt}0≤t≤T be two progressively measur-
able processes satisfying condition (H1) in Assumption 2.1, and {ρt}0≤t≤T

be the solution of (2.3). Then, for any r ∈R we have

E sup
0≤t≤T

ρrt <∞.(2.6)

Proof. Let t ∈ [0, T ]. The solution to (2.3) can be written as

ρt = exp

{∫ t

0

(
αs −

β2
s

2

)
ds+

∫ t

0
βs dWs

}
.

For any real number r, we have

E sup
0≤t≤T

ρrt = E sup
0≤t≤T

exp

{∫ t

0
r

(
αs −

β2
s

2

)
ds+ r

∫ t

0
βs dWs

}

≤ E

(
exp

{
|r|

∫ T

0
|αs|ds+

1

2
(|r|+ r2)

∫ T

0
β2
s ds

}

× sup
0≤t≤T

exp

{
r

∫ t

0
βs dWs −

r2

2

∫ t

0
β2
s ds

})
.

Then, fixing any p > 1 and using Hölder’s inequality, we obtain

E sup
0≤t≤T

ρrt ≤C

(
E sup

0≤t≤T
exp

{
rp

∫ t

0
βs dWs −

pr2

2

∫ t

0
β2
s ds

})1/p

,(2.7)

where

C =

(
E exp

{
q|r|

∫ T

0
|αs|ds+

q

2
(|r|+ r2)

∫ T

0
β2
s ds

})1/q

and 1
p +

1
q = 1.
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Set Mt = exp{r
∫ t
0 βs dWs −

r2

2

∫ t
0 β

2
s ds}. Then {Mt}0≤t≤T is a martingale

due to (H1). We can rewrite (2.7) into

E sup
0≤t≤T

ρrt ≤C
(
E sup

0≤t≤T
Mp

t

)1/p
.(2.8)

By Doob’s maximal inequality, we have

E sup
0≤t≤T

Mp
t ≤ cpEM

p
T(2.9)

for some constant cp > 0 depending only on p. Finally, choosing any γ > 1,
λ > 1 such that 1

γ + 1
λ = 1 and applying again the Hölder inequality yield

EMp
T = E

(
exp

{
rp

∫ T

0
βs dWs −

γ

2
p2r2

∫ T

0
β2
s ds

}

× exp

{
γp− 1

2
pr2
∫ T

0
β2
s ds

})

≤

(
E exp

{
rpγ

∫ T

0
βs dWs −

1

2
γ2p2r2

∫ T

0
β2
s ds

})1/γ

×

(
E exp

{
λ(γp− 1)

2
pr2
∫ T

0
β2
s ds

})1/λ

=

(
E exp

{
λ(γp− 1)

2
pr2
∫ T

0
β2
s ds

})1/λ

<∞.

Combining this inequality with (2.8) and (2.9) we complete the proof. �

Proof of Theorem 2.3. The existence and uniqueness is well known.
We are going to prove (2.5). Let t ∈ [0, T ]. Denote γt = ρ−1

t , where {ρt}0≤t≤T

is the solution to (2.3). Then {γt}0≤t≤T satisfies the following linear stochas-
tic differential equation:

{
dγt = (−αt + β2

t )γt dt− βtγt dWt, 0≤ t≤ T ,
γ0 = 1.

For any 0≤ s≤ t≤ T and any positive number r ≥ 1, we have, using (H2),
the Hölder inequality, the Burkholder–Davis–Gundy inequality and Lem-
ma 2.4 applied to the process {γt}0≤t≤T ,

E|γt − γs|
r = E

∣∣∣∣
∫ t

s
(−αu + β2

u)γu du−

∫ t

s
βuγu dWu

∣∣∣∣
r

≤ 2r−1

[
E

∣∣∣∣
∫ t

s
(−αu+β2

u)γu du

∣∣∣∣
r

+CrE

∣∣∣∣
∫ t

s
β2
uγ

2
u du

∣∣∣∣
r/2]

(2.10)

≤ C(t− s)r/2,
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where Cr is a constant depending only on r, and C is a constant depending
on T , r and the constants appearing in conditions (H1) and (H2).

From (2.3), (2.4) and by Itô’s formula, we obtain

d(Ytρt) =−ρtft dt+ (βtρtYt + ρtZt)dWt.

As a consequence,

Yt = ρ−1
t E

(
ξρT +

∫ T

t
ρrfr dr

∣∣∣Ft

)
= E

(
ξρt,T +

∫ T

t
ρt,rfr dr

∣∣∣Ft

)
,(2.11)

where we write ρt,r = ρ−1
t ρr = γtρr for any 0≤ t≤ r≤ T .

Now, fix 0≤ s≤ t≤ T . We have

E|Yt − Ys|
p = E

∣∣∣∣E
(
ξρt,T +

∫ T

t
ρt,rfr dr

∣∣∣Ft

)
−E

(
ξρs,T +

∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣
p

≤ 2p−1

[
E|E(ξρt,T |Ft)− E(ξρs,T |Fs)|

p

+ E

∣∣∣∣E
(∫ T

t
ρt,rfr dr

∣∣∣Ft

)
−E

(∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣
p]

= 2p−1(I1 + I2).

First we estimate I1. We have

I1 = E|E(ξρt,T |Ft)−E(ξρs,T |Fs)|
p

= E|E(ξρt,T |Ft)−E(ξρs,T |Ft) + E(ξρs,T |Ft)− E(ξρs,T |Fs)|
p

≤ 2p−1[E|E(ξρt,T |Ft)−E(ξρs,T |Ft)|
p +E|E(ξρs,T |Ft)−E(ξρs,T |Fs)|

p]

≤ 2p−1[E|ξ(ρt,T − ρs,T )|
p +E|E(ξρs,T |Ft)− E(ξρs,T |Fs)|

p]

= 2p−1(I3 + I4).

Using the Hölder inequality, Lemma 2.4 and the estimate (2.10) with r =
2pq
q−p , the term I3 can be estimated as follows:

I3 ≤ (E|ξ|q)p/q(E|ρt,T − ρs,T |
pq/(q−p))(q−p)/q

≤ (E|ξ|q)p/q(E|γt − γs|
2pq/(q−p))(q−p)/(2q)(Eρ

2pq/(q−p)
T )(q−p)/(2q)

≤ C|t− s|p/2,

where C is a constant depending only on p, q, T , E|ξ|q and the constants
appearing in conditions (H1) and (H2).

In order to estimate the term I4 we will make use of the condition ξρT ∈
M2,q. This condition implies that

ξρT = E(ξρT ) +

∫ T

0
ur dWr,
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where u is a progressively measurable process satisfying sup0≤t≤T E|ut|
q <∞.

Therefore, by the Burkholder–Davis–Gundy inequality, we have

E|E(ξρT |Ft)−E(ξρT |Fs)|
q

= E

∣∣∣∣
∫ t

s
ur dWr

∣∣∣∣
q

≤CqE

∣∣∣∣
∫ t

s
u2r dr

∣∣∣∣
q/2

≤Cq(t− s)(q−2)/2
E

(∫ t

s
|ur|

q dr

)

≤Cq(t− s)q/2 sup
0≤t≤T

E|ut|
q.

As a consequence, from the definition of I4 we have

I4 = E|γs[E(ξρT |Ft)− E(ξρT |Fs)]|
p

≤ (Eγpq/(q−p)
s )(q−p)/q(E|E(ξρT |Ft)−E(ξρT |Fs)|

q)p/q

≤C|t− s|p/2,

where C is a constant depending on p, q, T, sup0≤t≤T E|ut|
q < ∞ and the

constants appearing in conditions (H1) and (H2).
The term I2 can be decomposed as follows:

I2 = E

∣∣∣∣E
(∫ T

t
ρt,rfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣
p

≤ 3p−1

[
E

∣∣∣∣E
(∫ T

t
ρt,rfr dr

∣∣∣Ft

)
−E

(∫ T

t
ρs,rfr dr

∣∣∣Ft

)∣∣∣∣
p

+E

∣∣∣∣E
(∫ T

t
ρs,rfr dr

∣∣∣Ft

)
−E

(∫ T

s
ρs,rfr dr

∣∣∣Ft

)∣∣∣∣
p

+E

∣∣∣∣E
(∫ T

s
ρs,rfr dr

∣∣∣Ft

)
−E

(∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣
p]

= 3p−1(I5 + I6 + I7).

Let us first estimate the term I5. Suppose that p < p′ < q. Then, using (2.10)
and the Hölder inequality, we can write

I5 = E

∣∣∣∣E
(∫ T

t
ρt,rfr dr

∣∣∣Ft

)
− E

(∫ T

t
ρs,rfr dr

∣∣∣Ft

)∣∣∣∣
p

≤ E

∣∣∣∣
∫ T

t
(ρt,r − ρs,r)fr dr

∣∣∣∣
p

= E

(
|γt − γs|

p

∣∣∣∣
∫ T

t
ρrfr dr

∣∣∣∣
p)

≤ {E|γt − γs|
pp′/(p′−p)}(p

′−p)/p′
{
E

∣∣∣∣
∫ T

t
ρrfr dr

∣∣∣∣
p′}p/p′
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≤ C|t− s|p/2
{
E

(∫ T

t
ρ2r dr

)p′q/(2(q−p′))}p(q−p′)/(p′q)

×

{
E

(∫ T

t
f2
r dr

)q/2}p/q

≤ Ĉ|t− s|p/2‖f‖pHq ,

where Ĉ is a constant depending on p, p′, q, T and the constants appearing
in conditions (H1) and (H2).

Now we estimate I6. Suppose that p < p′ < q. We have, as in the estimate
of the term I5,

I6 = E

∣∣∣∣E
(∫ T

t
ρs,rfr dr

∣∣∣Ft

)
−E

(∫ T

s
ρs,rfr dr

∣∣∣Ft

)∣∣∣∣
p

≤ E

∣∣∣∣
∫ t

s
ρs,rfr dr

∣∣∣∣
p

= E

(
ρ−p
s

∣∣∣∣
∫ t

s
ρrfr dr

∣∣∣∣
p)

≤ {Eρ−pp′/(p′−p)
s }(p

′−p)/p′
{
E

∣∣∣∣
∫ t

s
ρrfr dr

∣∣∣∣
p′}p/p′

= C

{
E

∣∣∣∣
∫ t

s
ρrfr dr

∣∣∣∣
p′}p/p′

≤ C|t− s|p/2
{
E sup

0≤t≤T
ρ
p′q/(q−p′)
t

}p(q−p′)/(p′q)
‖f‖pHq

= Ĉ|t− s|p/2,

where Ĉ is a constant depending on p, p′, q, T and the constants appearing
in conditions (H1) and (H2).

The fact that
∫ T
0 ρrfr dr belongs to M2,q implies that
∫ T

0
ρrfr dr = E

∫ T

0
ρrfr dr+

∫ T

0
vr dWr,

where {vt}0≤t≤T is a progressively measurable process satisfying

sup
0≤t≤T

E|vt|
q <∞.

Then, by the Burkholder–Davis–Gundy inequality we have

E

∣∣∣∣E
(∫ T

s
ρrfr dr

∣∣∣Ft

)
− E

(∫ T

s
ρrfr dr

∣∣∣Fs

)∣∣∣∣
q

= E

∣∣∣∣E
(∫ T

0
ρrfr dr

∣∣∣Ft

)
−E

(∫ T

0
ρrfr dr

∣∣∣Fs

)∣∣∣∣
q

= E

∣∣∣∣
∫ t

s
vr dWr

∣∣∣∣
q

≤Cq(t− s)q/2 sup
0≤t≤T

E|vt|
q.
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Finally, we estimate I7 as follows:

I7 = E

∣∣∣∣E
(∫ T

s
ρs,rfr dr

∣∣∣Ft

)
−E

(∫ T

s
ρs,rfr dr

∣∣∣Fs

)∣∣∣∣
p

= E

∣∣∣∣ρ
−1
s

(
E

(∫ T

s
ρrfr dr

∣∣∣Ft

)
−E

(∫ T

s
ρrfr dr

∣∣∣Fs

))∣∣∣∣
p

≤ {Eρ−pq/(q−p)
s }(q−p)/p

(2.12)

×

{
E

∣∣∣∣E
(∫ T

s
ρrfr dr

∣∣∣Ft

)
−E

(∫ T

s
ρrfr dr

∣∣∣Fs

)∣∣∣∣
q}p/q

≤ C

{
E

∣∣∣∣E
(∫ T

s
ρrfr dr

∣∣∣Ft

)
−E

(∫ T

s
ρrfr dr

∣∣∣Fs

)∣∣∣∣
q}p/q

≤ Ĉ|t− s|p/2,

where Ĉ is a constant depending on p, q, T , sup0≤t≤T E|vt|
q and the con-

stants appearing in conditions (H1) and (H2).
As a consequence, we obtain for all s, t ∈ [0, T ]

E|Yt − Ys|
p ≤K|t− s|p/2,

where K is a constant independent of s and t. �

2.3. The Malliavin calculus for BSDEs. We return to the study of (1.1).
The main assumptions we make on the terminal value ξ and generator f are
the following:

Assumption 2.2. Fix 2≤ p < q
2 .

(i) ξ ∈D
2,q, and there exists L> 0, such that for all θ, θ′ ∈ [0, T ],

E|Dθξ −Dθ′ξ|
p ≤ L|θ− θ′|p/2,(2.13)

sup
0≤θ≤T

E|Dθξ|
q <∞(2.14)

and

sup
0≤θ≤T

sup
0≤u≤T

E|DuDθξ|
q <∞.(2.15)

(ii) The generator f(t, y, z) has continuous and uniformly bounded first-
and second-order partial derivatives with respect to y and z, and f(·,0,0) ∈
Hq

F ([0, T ]).
(iii) Assume that ξ and f satisfy the above conditions (i) and (ii). Let

(Y,Z) be the unique solution to (1.1) with terminal value ξ and generator f .

For each (y, z) ∈R×R, f(·, y, z), ∂yf(·, y, z) and ∂zf(·, y, z) belong to L
1,q
a ,
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and the Malliavin derivatives Df(·, y, z), D∂yf(·, y, z) and D∂zf(·, y, z) sat-
isfy

sup
0≤θ≤T

E

(∫ T

θ
|Dθf(t, Yt,Zt)|

2 dt

)q/2

<∞,(2.16)

sup
0≤θ≤T

E

(∫ T

θ
|Dθ∂yf(t, Yt,Zt)|

2 dt

)q/2

<∞,(2.17)

sup
0≤θ≤T

E

(∫ T

θ
|Dθ∂zf(t, Yt,Zt)|

2 dt

)q/2

<∞,(2.18)

and there exists L>0 such that for any t∈ (0, T ], and for any 0≤θ, θ′≤ t≤T

E

(∫ T

t
|Dθf(r,Yr,Zr)−Dθ′f(r,Yr,Zr)|

2 dr

)p/2

≤ L|θ− θ′|p/2.(2.19)

For each θ ∈ [0, T ], and each pair of (y, z), Dθf(·, y, z) ∈ L
1,q
a and it has

continuous partial derivatives with respect to y, z, which are denoted by
∂yDθf(t, y, z) and ∂zDθf(t, y, z), and the Malliavin derivative DuDθf(t, y, z)
satisfies

sup
0≤θ≤T

sup
0≤u≤T

E

(∫ T

θ∨u
|DuDθf(t, Yt,Zt)|

2 dt

)q/2

<∞.(2.20)

The following property is easy to check and we omit the proof.

Remark 2.5. Conditions (2.17) and (2.18) imply

sup
0≤θ≤T

E

(∫ T

θ
|∂yDθf(t, Yt,Zt)|

2 dt

)q/2

<∞

and

sup
0≤θ≤T

E

(∫ T

θ
|∂zDθf(t, Yt,Zt)|

2 dt

)q/2

<∞,

respectively.

The following is the main result of this section.

Theorem 2.6. Let Assumption 2.2 be satisfied.

(a) There exists a unique solution pair {(Yt,Zt)}0≤t≤T to the BSDE (1.1),

and Y,Z are in L
1,q
a . A version of the Malliavin derivatives {(DθYt,
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DθZt)}0≤θ,t≤T of the solution pair satisfies the following linear BSDE:

DθYt =Dθξ +

∫ T

t
[∂yf(r,Yr,Zr)DθYr

+ ∂zf(r,Yr,Zr)DθZr +Dθf(r,Yr,Zr)]dr(2.21)

−

∫ T

t
DθZr dWr, 0≤ θ ≤ t≤ T ;

DθYt = 0, DθZt = 0, 0≤ t < θ ≤ T.(2.22)

Moreover, {DtYt}0≤t≤T defined by (2.21) gives a version of {Zt}0≤t≤T , namely,
µ×P a.e.

Zt =DtYt.(2.23)

(b) There exists a constant K > 0, such that, for all s, t ∈ [0, T ],

E|Zt −Zs|
p ≤K|t− s|p/2.(2.24)

Proof. Part (a): The proof of the existence and uniqueness of the solu-

tion (Y,Z), and Y,Z ∈ L
1,2
a is similar to that of Proposition 5.3 in [7], and also

the fact that (DθYt,DθZt) is given by (2.21) and (2.22). In Proposition 5.3

in [7] the exponent q is equal to 4, and one assumes that
∫ T
0 ‖Dθf(·, Y,

Z)‖2H2 dθ <∞, which is a consequence of (2.16) and the fact that Y,Z ∈ L
1,2
a .

Furthermore, from conditions (2.14) and (2.16) and the estimate in Lem-
ma 2.2, we obtain

sup
0≤θ≤T

{
E sup

θ≤t≤T
|DθYt|

q +E

(∫ T

θ
|DθZt|

2 dt

)q/2}
<∞.(2.25)

Hence, by Proposition 1.5.5 in [14], Y and Z belong to L
1,q
a .

Part (b): Let 0≤ s≤ t≤ T . In this proof, C > 0 will be a constant inde-
pendent of s and t, and may vary from line to line.

By representation (2.23) we have

Zt −Zs =DtYt −DsYs = (DtYt −DsYt) + (DsYt −DsYs).(2.26)

From Lemma 2.2 and equation (2.21) for θ = s and θ′ = t, respectively, we
obtain, using conditions (2.13) and (2.19),

E|DtYt −DsYt|
p +E

(∫ T

t
|DtZr −DsZr|

2 dr

)p/2

≤C

[
E|Dtξ −Dsξ|

p

(2.27)

+E

(∫ T

t
|Dtf(r,Yr,Zr)−Dsf(r,Yr,Zr)|

2 dr

)p/2]

≤C|t− s|p/2.
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Denote αu = ∂yf(u,Yu,Zu) and βu = ∂zf(u,Yu,Zu) for all u ∈ [0, T ]. Then,
by Assumption 2.2(ii), the processes α and β satisfy conditions (H1) and (H2)
in Assumption 2.1, and from (2.21) we have for r ∈ [s,T ]

DsYr =Dsξ +

∫ T

r
[αuDsYu + βuDsZu +Dsf(u,Yu,Zu)]du−

∫ T

r
DsZu dWu.

Next, we are going to use Theorem 2.3 to estimate E|DsYt −DsYs|
p. Fix p′

with p < p′ < q
2 (notice that p′ < q

2 is equivalent to p′

q−p′ < 1). From con-

ditions (2.14) and (2.16), it is obvious that Dsξ ∈ Lq(Ω) ⊂ Lp′(Ω) and
Dsf(·, Y,Z) ∈ Hq([0, T ]) ⊂ Hp′([0, T ]) for any s ∈ [0, T ]. We are going to

show that, for any s ∈ [0, T ], ρTDsξ and
∫ T
s ρuDsf(u,Yu,Zu)du are elements

in M2,p′ , where

ρr = exp

{∫ r

0
βu dWu +

∫ r

0

(
αu −

1

2
β2
u

)
du

}
.

For any 0≤ θ ≤ r≤ T , let us compute

Dθρr = ρr

{∫ r

θ
[∂yzf(u,Yu,Zu)DθYu

+ ∂zzf(u,Yu,Zu)DθZu +Dθ∂zf(u,Yu,Zu)]dWu

+ ∂zf(θ,Yθ,Zθ)

+

∫ r

θ
(∂yyf(u,Yu,Zu)− ∂yzf(u,Yu,Zu)βu)DθYu du

+

∫ r

θ
(∂yzf(u,Yu,Zu)− ∂zzf(u,Yu,Zu)βu)DθZu du

+

∫ r

θ
(Dθ∂yf(u,Yu,Zu)− βuDθ∂zf(u,Yu,Zu))du

}
.

By the boundedness of the first- and second-order partial derivatives of f
with respect to y and z, (2.17), (2.18), (2.25), Lemma 2.4, the Hölder in-
equality and the Burkholder–Davis–Gundy inequality, it is easy to show that
for any p′′ < q,

sup
0≤θ≤T

E sup
θ≤r≤T

|Dθρr|
p′′ <∞.(2.28)

By the Clark–Ocone–Haussman formula, we have

ρTDsξ = E(ρTDsξ) +

∫ T

0
E(Dθ(ρTDsξ)|Fθ)dWθ

= E(ρTDsξ) +

∫ T

0
E(DθρTDsξ + ρTDθDsξ|Fθ)dWθ

= E(ρTDsξ) +

∫ T

0
usθ dWθ
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and
∫ T

s
ρrDsf(r,Yr,Zr)dr

= E

∫ T

s
ρrDsf(r,Yr,Zr)dr

+

∫ T

0
E

(
Dθ

∫ T

s
ρrDsf(r,Yr,Zr)dr

∣∣∣Fθ

)
dWθ

= E

∫ T

s
ρrDsf(r,Yr,Zr)dr

+

∫ T

0
E

(∫ T

s
[DθρrDsf(r,Yr,Zr)

+ ρr∂yDsf(r,Yr,Zr)DθYr

+ ρr∂zDsf(r,Yr,Zr)DθZr

+ ρrDθDsf(r,Yr,Zr)]dr
∣∣∣Fθ

)
dWθ

= E

∫ T

s
ρrDsf(r,Yr,Zr)dr+

∫ T

0
vsθ dWθ.

We claim that sup0≤θ≤T E|usθ|
p′ <∞ and sup0≤θ≤T E|vsθ|

p′ <∞. In fact,

E|usθ|
p′ = E|E(DθρTDsξ + ρTDθDsξ|Fθ)|

p′

≤ 2p
′−1(E|DθρTDsξ|

p′ +E|ρTDθDsξ|
p′)

≤ 2p
′−1((E|DθρT |

p′q/(q−p′))(q−p′)/q(E|Dsξ|
q)p

′/q

+ (Eρ
p′q/(q−p′)
T )(q−p′)/q(E|DθDsξ|

q)p
′/q).

By (2.14), (2.15), (2.28) and Lemma 2.4, we have sup0≤s≤T sup0≤θ≤T E|usθ|
p′ <

∞. On the other hand,

E|vsθ|
p′ = E

∣∣∣∣E
(∫ T

s
[DθρrDsf(r,Yr,Zr)

+ ρr∂yDsf(r,Yr,Zr)DθYr

+ ρr∂zDsf(r,Yr,Zr)DθZr

+ ρrDθDsf(r,Yr,Zr)]dr
∣∣∣Fθ

)∣∣∣∣
p′

≤ 4p
′−1[J1 + J2 + J3 + J4],
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where

J1 = E

∣∣∣∣
∫ T

s
DθρrDsf(r,Yr,Zr)dr

∣∣∣∣
p′

,

J2 = E

∣∣∣∣
∫ T

s
ρr∂yDsf(r,Yr,Zr)DθYr dr

∣∣∣∣
p′

,

J3 = E

∣∣∣∣
∫ T

s
ρr∂zDsf(r,Yr,Zr)DθZr dr

∣∣∣∣
p′

and

J4 = E

∣∣∣∣
∫ T

s
ρrDθDsf(r,Yr,Zr)dr

∣∣∣∣
p′

.

For J1, we have

J1 ≤ E

(
sup

θ≤r≤T
|Dθρr|

p′
∣∣∣∣
∫ T

s
Dsf(r,Yr,Zr)dr

∣∣∣∣
p′)

≤
(
E sup

θ≤r≤T
|Dθρr|

p′q/(q−p′)
)(q−p′)/q

×

(
E

∣∣∣∣
∫ T

s
Dsf(r,Yr,Zr)dr

∣∣∣∣
q)p′/q

≤ T p′/2
(
E sup

θ≤r≤T
|Dθρr|

p′q/(q−p′)
)(q−p′)/q

×

(
E

(∫ T

0
|Dsf(r,Yr,Zr)|

2 dr

)q/2)p′/q

.

For J2, we have

J2 ≤ E

(
sup

θ≤r≤T
|DθYr|

p′
(

sup
0≤r≤T

ρr

∫ T

s
|∂yDsf(r,Yr,Zr)|dr

)p′)

≤
(
E sup

θ≤r≤T
|DθYr|

q
)p′/q

×

(
E

(
sup

0≤r≤T
ρr

∫ T

s
|∂yDsf(r,Yr,Zr)|dr

)p′q/(q−p′))(q−p′)/q

≤
(
E sup

θ≤r≤T
|DθYr|

q
)p′/q(

E sup
0≤r≤T

ρp
′q/(q−2p′)

r

)(q−2p′)/q

×

(
E

(∫ T

s
|∂yDsf(r,Yr,Zr)|dr

)q)p′/q
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≤ T p′/2
(
E sup

θ≤r≤T
|DθYr|

q
)p′/q(

E sup
0≤r≤T

ρp
′q/(q−2p′)

r

)(q−2p′)/q

×

(
E

(∫ T

0
|∂yDsf(r,Yr,Zr)|

2 dr

)q/2)p′/q

.

Using a similar techniques as before, we obtain that

J3 ≤ T p′/2

(
E

(∫ T

0
|DθZr|

2 dr

)q/2)p′/q(
E sup

0≤r≤T
ρp

′q/(q−2p′)
r

)(q−2p′)/q

×

(
E

(∫ T

0
|∂zDsf(r,Yr,Zr)|

2 dr

)q/2)p′/q

and

J4 ≤ T p′/2
(
E sup

0≤r≤T
ρp

′q/(q−p′)
r

)(q−p′)/q

×

(
E

(∫ T

0
|DθDsf(r,Yr,Zr)|

2 dr

)q/2)p′/q

.

By (2.16), (2.17)–(2.20), (2.28) and Lemma 2.4, we obtain that

sup
0≤s≤T

sup
0≤θ≤T

E|vsθ|
p′ <∞.

Therefore, ρT ξ and
∫ T
0 ρuDsf(u,Yu,Zu)du belong to M2,p′ .

Thus by Theorem 2.3 with p < p′, there is a constant C(s)> 0, such that

E|DsYt −DsYs|
p ≤C(s)|t− s|p/2

for all t ∈ [s,T ]. Furthermore, taking into account the proof of the esti-
mates Ik (k = 3,4, . . . ,7) in the proof of Theorem 2.3, we can show that
sup0≤s≤T C(s) =:C <∞. Thus we have

E|DsYt −DsYs|
p ≤C|t− s|p/2(2.29)

for all s, t ∈ [0, T ]. Combining (2.29) with (2.26) and (2.27), we obtain that
there is a constant K > 0 independent of s and t, such that

E|Zt −Zs|
p ≤K|t− s|p/2

for all s, t ∈ [0, T ]. �

Corollary 2.7. Under the assumptions in Theorem 2.2, let (Y,Z) ∈
Sq
F ([0, T ]) × Hq

F ([0, T ]) be the unique solution pair to (1.1). If
sup0≤t≤T E|Zt|

q < ∞, then there exists a constant C, such that, for any
s, t ∈ [0, T ],

E|Yt − Ys|
q ≤C|t− s|q/2.(2.30)
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Proof. Without loss of generality we assume 0 ≤ s ≤ t ≤ T . C > 0 is
a constant independent of s and t, which may vary from line to line. Since

Ys = Yt +

∫ t

s
f(r,Yr,Zr)dr−

∫ t

s
Zr dWr,

we have, by the Lipschitz condition on f ,

E|Yt − Ys|
q = E

∣∣∣∣
∫ t

s
f(r,Yr,Zr)dr−

∫ t

s
Zr dWr

∣∣∣∣
q

≤ 2q−1

(
E

∣∣∣∣
∫ t

s
f(r,Yr,Zr)dr

∣∣∣∣
q

+ E

∣∣∣∣
∫ t

s
Zr dWr

∣∣∣∣
q)

≤ Cq

(
|t− s|q/2E

(∫ t

s
|f(r,Yr,Zr)|

2 dr

)q/2

+E

(∫ t

s
|Zr|

2 dr

)q/2)

≤ C

{
|t− s|q/2

[
E

(∫ t

s
|Yr|

2 dr

)q/2

+ E

(∫ t

s
|Zr|

2 dr

)q/2

+E

(∫ t

s
|f(r,0,0)|2 dr

)q/2]

+ |t− s|q/2 sup
0≤r≤T

E|Zr|
q

}

≤ C|t− s|q/2.

The proof is complete. �

Remark 2.8. From Theorem 2.6 we know that {(DθYt,DθZt)}0≤θ≤t≤T

satisfies equation (2.21) and Zt = DtYt, µ × P a.e. Moreover, since (2.14)
and (2.16) hold, we can apply the estimate (2.2) in Lemma 2.2 to the linear
BSDE (2.21) and deduce sup0≤t≤T E|Zt|

q <∞. Therefore, by Lemma 2.7,
the process Y satisfies the inequality (2.30). By Kolmogorov’s continuity
criterion this implies that Y has Hölder continuous trajectories of order γ
for any γ < 1

2 −
1
q .

2.4. Examples. In this section we discuss three particular examples where
Assumption 2.2 is satisfied.

Example 2.9. Consider equation (1.1). Assume that:

(a) f(t, y, z) : [0, T ]×R×R→R is a deterministic function that has uni-
formly bounded first- and second-order partial derivatives with respect to y

and z, and
∫ T
0 f(t,0,0)2 dt <∞.
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(b) The terminal value ξ is a multiple stochastic integral of the form

ξ =

∫

[0,T ]n
g(t1, . . . , tn)dWt1 · · ·dWtn ,(2.31)

where n ≥ 2 is an integer and g(t1, . . . , tn) is a symmetric function in
L2([0, T ]n), such that

sup
0≤u≤T

∫

[0,T ]n−1

g(t1, . . . , tn−1, u)
2 dt1 · · ·dtn−1 <∞,

sup
0≤u,v≤T

∫

[0,T ]n−2

g(t1, . . . , tn−2, u, v)
2 dt1 · · ·dtn−2 <∞,

and there exists a constant L> 0 such that for any u, v ∈ [0, T ]
∫

[0,T ]n−1

|g(t1, . . . , tn−1, u)− g(t1, . . . , tn−1, v)|
2 dt1 · · ·dtn−1 <L|u− v|.

From (2.31), we know that

Duξ = n

∫

[0,T ]n−1

g(t1, . . . , tn−1, u)dWt1 · · ·dWtn−1 .

The above assumption implies Assumption 2.2, and therefore, Z satisfies the
Hölder continuity property (2.24).

Example 2.10. Let Ω =C0([0,1]) equipped with the Borel σ-field and
Wiener measure. Then, Ω is a Banach space with supremum norm ‖ · ‖∞,
and Wt = ω(t) is the canonical Wiener process. Consider equation (1.1) on
the interval [0,1]. Assume that:

(g1) f(t, y, z) : [0,1]×R×R→R is a deterministic function that has uni-
formly bounded first- and second-order partial derivatives with respect to y

and z, and
∫ 1
0 f(t,0,0)2 dt <∞.

(g2) ξ = ϕ(W ), where ϕ :Ω→ R is twice Fréchet differentiable, and the
first- and second-order Fréchet derivatives δϕ and δ2ϕ satisfy

|ϕ(ω)|+ ‖δϕ(ω)‖+ ‖δ2ϕ(ω)‖ ≤C1 exp{C2‖ω‖
r
∞}

for all ω ∈ Ω and some constants C1 > 0, C2 > 0 and 0< r < 2, where ‖ · ‖
denotes the operator norm (total variation norm).

(g3) If λ denotes the signed measure on [0,1] associated with δϕ, there
exists a constant L> 0 such that for all 0≤ θ ≤ θ′ ≤ 1,

E|λ((θ, θ′])|p ≤L|θ− θ′|p/2

for some p≥ 2.
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It is easy to show that Dθξ = λ((θ,1]) and DuDθξ = ν((θ,1]×(u,1]), where ν
denotes the signed measure on [0,1]× [0,1] associated with δ2ϕ. From the
above assumptions and Fernique’s theorem, we can get Assumption 2.2, and
therefore, the Hölder continuity property (2.24) of Z.

Example 2.11. Consider the following forward–backward stochastic
differential equation (FBSDE for short):





Xt =X0 +

∫ t

0
b(r,Xr)dr+

∫ t

0
σ(r,Xr)dWr,

Yt = ϕ

(∫ T

0
X2

r dr

)
+

∫ T

t
f(r,Xr, Yr,Zr)dr−

∫ T

t
Zr dWr,

(2.32)

where b, σ, ϕ and f are deterministic functions, and X0 ∈R.
We make the following assumptions:

(h1) b and σ has uniformly bounded first- and second-order partial deriva-
tives with respect to x, and there is a constant L > 0, such that, for any
s, t ∈ [0, T ], x ∈R,

|σ(t, x)− σ(s,x)| ≤L|t− s|1/2.

(h2) sup0≤t≤T {|b(t,0)|+ |σ(t,0)|}<∞.
(h3) ϕ is twice differentiable, and there exist a constant C > 0 and a pos-

itive integer n such that
∣∣∣∣ϕ
(∫ T

0
X2

t dt

)∣∣∣∣+
∣∣∣∣ϕ

′

(∫ T

0
X2

t dt

)∣∣∣∣+
∣∣∣∣ϕ

′′

(∫ T

0
X2

t dt

)∣∣∣∣≤C(1 + ‖X‖∞)n,

where ‖x‖∞ = sup{|x(t)|,0≤ t≤ T} for any x ∈C([0, T ]).
(h4) f(t, x, y, z) has continuous and uniformly bounded first- and second-

order partial derivatives with respect to x, y and z and
∫ T
0 f(t,0,0,0)2 dt <∞.

Notice that in this example, Φ(X) = ϕ(
∫ T
0 X2

t dt) is not necessarily globally
Lipschitz in X , and the results of [16] cannot be applied directly.

Under the above assumptions, (h1) and (h4), equation (2.32) has a unique
solution triple (X,Y,Z), and we have the following classical results: for any
real number r > 0, there exists a constant C > 0 such that

E sup
0≤t≤T

|Xt|
r <∞, E|Xt −Xs|

r ≤C|t− s|r/2

for any t, s ∈ [0, T ]. For any fixed (y, z) ∈ R×R, we have Dθf(t,Xt, y, z) =
∂xf(t,Xt, y, z)DθXt. Then, under all the assumptions in this example, by
Theorem 2.2.1 and Lemma 2.2.2 in [14] and the results listed above, we
can verify Assumption 2.2. Therefore, Z has the Hölder continuity prop-
erty (2.24).

Note that in the multidimensional case we do not require the matrix σσT

to be invertible.
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3. An explicit scheme for BSDEs. In the remaining part of this paper,
we let π = {0 = t0 < t1 < · · · < tn = T} be a partition of the interval [0, T ]
and |π|=max0≤i≤n−1 |ti+1 − ti|. Denote ∆i = ti+1 − ti,0≤ i≤ n− 1.

From (1.1), we know that, when t ∈ [ti, ti+1],

Yt = Yti+1 +

∫ ti+1

t
f(r,Yr,Zr)dr−

∫ ti+1

t
Zr dWr.(3.1)

Comparing with the numerical schemes for forward stochastic differential
equations, we could introduce a numerical scheme of the form

Y 1,π
tn = ξπ,

Y 1,π
ti

= Y 1,π
ti+1

+ f(ti+1, Y
1,π
ti+1

,Z1,π
ti+1

)∆i −

∫ ti+1

ti

Z1,π
r dWr,

t ∈ [ti, ti+1), i= n− 1, n− 2, . . . ,0,

where ξπ ∈ L2(Ω) is an approximation of the terminal condition ξ. This leads

to a backward recursive formula for the sequence {Y 1,π
ti

,Z1,π
ti

}0≤i≤n. In fact,

once Y 1,π
ti+1

and Z1,π
ti+1

are defined, then we can find Y 1,π
ti

by

Y 1,π
ti

= E(Y 1,π
ti+1

+ f(ti+1, Y
1,π
ti+1

,Z1,π
ti+1

)∆i|Fti),

and {Z1,π
r }ti≤r<ti+1 is determined by the stochastic integral representation

of the random variable

Y 1,π
ti

− Y 1,π
ti+1

− f(ti+1, Y
1,π
ti+1

,Z1,π
ti+1

)∆i.

Although {Z1,π
r }ti≤r<ti+1 can be expressed explicitly by Clark–Ocone–Hauss-

man formula, its computation is a hard problem in practice. On the other
hand, there are difficulties in studying the convergence of the above scheme.

An alternative scheme is introduced in [16], where the approximating pairs
(Y π,Zπ) are defined recursively by

Y π
tn = ξπ, Zπ

tn = 0,

Y π
t = Y π

ti+1
+ f

(
ti+1, Y

π
ti+1

,E

(
1

∆i+1

∫ ti+2

ti+1

Zπ
r dr

∣∣∣Fti+1

))
∆i(3.2)

−

∫ ti+1

t
Zπ
r dWr, t ∈ [ti, ti+1), i= n− 1, n− 2, . . . ,0,

where, by convention, E( 1
∆i+1

∫ ti+2

ti+1
Zπ
r dr|Fti+1) = 0 when i = n− 1. In [16]

the following rate of convergence is proved for this approximation scheme,
assuming that the terminal value ξ and the generator f are functionals of
a forward diffusion associated with the BSDE,

max
0≤i≤n

E|Yti − Y π
ti |

2 + E

∫ T

0
|Zt −Zπ

t |
2 dt≤K|π|.(3.3)
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The main result of this section is the following, which on one hand im-
proves the above rate of convergence, and on the other hand extends terminal
value ξ and generator f to more general situation.

Theorem 3.1. Consider the approximation scheme (3.2). Let Assump-
tion 2.2 be satisfied, and let the partition π satisfy max0≤i≤n−1∆i/∆i+1 ≤L1,
where L1 is a constant. Assume that a constant L2 > 0 exists such that

|f(t2, y, z)− f(t1, y, z)| ≤L2|t2 − t1|
1/2(3.4)

for all t1, t2 ∈ [0, T ] and y, z ∈R. Then there are positive constants K and δ,
independent of the partition π, such that, if |π|< δ, then

E sup
0≤t≤T

|Yt − Y π
t |2 +E

∫ T

0
|Zt −Zπ

t |
2 dt≤K(|π|+ E|ξ − ξπ|2).(3.5)

Proof. In this proof, C > 0 will denote a constant independent of the
partition π, which may vary from line to line. Inequality (2.24) in Theo-
rem 2.6(b) yields the following estimate (Theorem 3.1 in [16]) with p= 2:

n−1∑

i=0

E

∫ ti+1

ti

(|Zt −Zti |
2 + |Zt −Zti+1 |

2)dt≤C|π|.

Using this estimate and following the same argument as the proof of Theo-
rem 5.3 in [16], we can obtain the following result:

max
0≤i≤n

E|Yti − Y π
ti |

2 +E

∫ T

0
|Zt −Zπ

t |
2 dt≤C(|π|+E|ξ − ξπ|2).(3.6)

Denote

Z̃π
ti =





0, if i= n;

E

(
1

∆i

∫ ti+1

ti

Zπ
r dr

∣∣∣Fti

)
, if i= n− 1, n− 2, . . . ,0.

(3.7)

If ti ≤ t < ti+1, i= n− 1, n− 2, . . . ,0, then, by iteration, we have

Y π
t = Y π

ti+1
+ f(ti+1, Y

π
ti+1

, Z̃π
ti+1

)∆i −

∫ ti+1

t
Zπ
r dWr

(3.8)

= ξπ +

n∑

k=i+1

f(tk, Y
π
tk
, Z̃π

tk
)∆k−1 −

∫ T

t
Zπ
r dWr.

Therefore,

Y π
t = E

(
ξπ +

n∑

k=i+1

f(tk, Y
π
tk
, Z̃π

tk
)∆k−1

∣∣∣Ft

)
, t ∈ [ti, ti+1).
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We rewrite the BSDE (1.1) as follows:

Yt = ξ +

∫ T

t
f(r,Yr,Zr)dr−

∫ T

t
Zr dWr

(3.9)

= ξ +
n∑

k=i+1

f(tk, Ytk ,Ztk)∆k−1 −

∫ T

t
Zr dWr +Rπ

t ,

where

|Rπ
t |=

∣∣∣∣∣

∫ T

t
f(r,Yr,Zr)dr−

n∑

k=i+1

f(tk, Ytk ,Ztk)∆k−1

∣∣∣∣∣

=

∣∣∣∣∣

n∑

k=i+1

∫ tk

tk−1

[f(r,Yr,Zr)− f(tk, Ytk ,Ztk)]dr−

∫ t

ti

f(r,Yr,Zr)dr

∣∣∣∣∣

≤

n∑

k=i+1

∫ tk

tk−1

|f(r,Yr,Zr)− f(tk, Ytk ,Ztk)|dr+

∫ ti+1

ti

|f(r,Yr,Zr)|dr.

By Lemma 2.2 and the Lipschitz condition on f , we have

E

(∫ T

0
|f(r,Yr,Zr)|

2 dr

)p/2

<∞,

and hence,

E max
0≤i≤n−1

(∫ ti+1

ti

|f(r,Yr,Zr)|dr

)p

(3.10)

≤ |π|p/2E

(∫ T

0
|f(r,Yr,Zr)|

2 dr

)p/2

.

Define a function {t(r)}0≤r≤T by

t(r) =

{
T, if r = T ,
ti+1, if ti ≤ r < ti+1, i= n− 1, . . . ,0.

By the Hölder inequality, the boundedness of the first-order partial deriva-
tives of f , (3.4), (2.24), Remark 2.8 and (3.10), it is easy to see that

E sup
0≤t≤T

|Rπ
t |

p ≤ 2p−1

[
E

(∫ T

0
|f(r,Yr,Zr)− f(t(r), Yt(r),Zt(r))|dr

)p

+ E max
0≤i≤n−1

(∫ ti+1

ti

|f(r,Yr,Zr)|dr

)p]

≤ (2T )p−1
E

∫ T

0
|f(r,Yr,Zr)− f(t(r), Yt(r),Zt(r))|

p dr(3.11)
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+2p−1|π|p/2E

(∫ T

0
|f(r,Yr,Zr)|

2 dr

)p/2

≤C|π|p/2,

where, by convention, RT = 0. In particular, we obtain

E sup
0≤t≤T

|Rπ
t |

2 ≤C|π|.(3.12)

To simplify the notation we denote

δY π
t = Yt − Y π

t , δZπ
t =Zt −Zπ

t for all t ∈ [0, T ]

and

Ẑπ
ti =Zti − Z̃π

ti for i= n,n− 1, . . . ,0.

Then, when ti ≤ t < ti+1, by (3.8) and (3.9) we can write

δY π
t =

n∑

k=i+1

[f(tk, Ytk ,Ztk)− f(tk, Y
π
tk
, Z̃π

tk
)]∆k−1

−

∫ T

t
δZπ

r dWr +Rπ
t + δξπ,

where δξπ = ξ − ξπ. Therefore, we obtain

δY π
t = E

(
n∑

k=i+1

[f(tk, Ytk ,Ztk)− f(tk, Y
π
tk
, Z̃π

tk
)]∆k−1 +Rπ

t + δξπ
∣∣∣Ft

)
.(3.13)

Denote f̃π
tk
= f(tk, Ytk ,Ztk)−f(tk, Y

π
tk
, Z̃π

tk
). From equality (3.13) for tj ≤ t <

tj+1, where i ≤ j ≤ n− 1, and taking into account that δY π
T = δY π

tn = δξπ ,
we obtain

sup
ti≤t≤T

|δY π
t | ≤ sup

ti≤t≤T
E

(
n∑

k=i+1

|f̃π
tk
|∆k−1 + sup

0≤r≤T
|Rπ

r |+ |δξπ|
∣∣∣Ft

)
.

The above conditional expectation is a martingale if it is considered as a pro-
cess indexed by t ∈ [ti, T ]. Thus, using Doob’s maximal inequality, we obtain

E sup
ti≤t≤T

|δY π
t |2 ≤ E sup

ti≤t≤T

[
E

(
n∑

k=i+1

|f̃π
tk
|∆k−1 + sup

0≤r≤T
|Rπ

r |+ |δξπ|
∣∣∣Ft

)]2

≤CE

(
n∑

k=i+1

|f̃π
tk
|∆k−1 + sup

0≤r≤T
|Rπ

r |+ |δξπ|

)2

≤C

{
E

(
n∑

k=i+1

|f̃π
tk
|∆k−1

)2

+ E sup
0≤r≤T

|Rπ
r |

2 +E|δξπ|2

}
.
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From (3.12), we deduce

E sup
ti≤t≤T

|δY π
t |2 ≤C

{
E

(
n∑

k=i+1

|f̃π
tk
|∆k−1

)2

+E|δξπ|2 + |π|

}
.

Using the Lipschitz condition on f , we obtain

E sup
ti≤t≤T

|δY π
t |2 ≤C

{
(T − ti)

2
E sup

i+1≤k≤n
|δY π

tk
|2

+E

(
n−1∑

k=i+1

|Ẑπ
tk
|∆k−1

)2

+E|Ẑtn |
2∆2

n−1

}
(3.14)

+C(E|δξπ|2 + |π|).

Notice that

E

(
n−1∑

k=i+1

|Ẑπ
tk
|∆k−1

)2

= E

(
n−1∑

k=i+1

∣∣∣∣Ztk −
1

∆k

∫ tk+1

tk

E(Zπ
u |Ftk)du

∣∣∣∣∆k−1

)2

≤ E

(
n−1∑

k=i+1

∆k−1

∆k

∫ tk+1

tk

E(|Ztk −Zπ
u ||Ftk)du

)2

≤ L2
1E

(
n−1∑

k=i+1

∫ tk+1

tk

E(|Ztk −Zπ
u ||Ftk )du

)2

(3.15)

≤ 2L2
1

{
E

(
n−1∑

k=i+1

∫ tk+1

tk

E(|Ztk −Zu||Ftk )du

)2

+E

(
n−1∑

k=i+1

∫ tk+1

tk

E(|Zu −Zπ
u ||Ftk )du

)2}

= 2L2
1(I1 + I2).

Now the Minkowski and the Hölder inequalities yield

I1 ≤ E

(
n−1∑

k=i+1

{∫ tk+1

tk

(E(|Ztk −Zu||Ftk ))
2 du

}1/2

∆
1/2
k

)2

≤ (T − ti)
n−1∑

k=i+1

∫ tk+1

tk

E(E(|Ztk −Zu||Ftk ))
2 du

(3.16)

≤ (T − ti)
n−1∑

k=i+1

∫ tk+1

tk

E|Ztk −Zu|
2 du
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≤C(T − ti)
n−1∑

k=i+1

∫ tk+1

tk

|tk − u|du≤C|π|.

In a similar way and by (3.6), we obtain

I2 ≤ (T − ti)

n−1∑

k=i+1

∫ tk+1

tk

E|Zu −Zπ
u |

2 du

(3.17)

= (T − ti)

∫ T

ti+1

E|δZπ
u |

2 du≤C|π|.

On the other hand,

E(Ẑπ
tn∆n−1)

2 = E|Ztn |
2|∆n−1|

2 ≤C|π|2.(3.18)

From (3.14)–(3.18), we have

E sup
ti≤t≤T

|δY π
t |2 ≤C1(T − ti)

2
E sup

i+1≤k≤n
|δY π

tk
|2

(3.19)
+C2(E|δξ

π|2 + |π|),

where C1 and C2 are two positive constants independent of the partition π.
We can find a constant δ > 0 independent of the partition π, such that

C1(3δ)
2 < 1

2 and T > 2δ. Denote l = [ T2δ ] ([x] means the greatest integer no
larger than x). Then l ≥ 1 is an integer independent of the partition π. If
|π|< δ, then for the partition π we can choose n− 1> i1 > i2 > · · ·> il ≥ 0,
such that, T − 2δ ∈ (ti1−1, ti1 ], T − 4δ ∈ (ti2−1, ti2 ], . . . , T − 2δl ∈ [0, til ] (with
t−1 = 0).

For simplicity, we denote ti0 = T and til+1
= 0. Each interval [tij+1 , tij ], j =

0,1, . . . , l, has length less than 3δ, that is, |tij − tij+1 |< 3δ. On each interval
[tij+1 , tij ], j = 0,1, . . . , l, we consider the recursive formula (3.2), and (3.19)
becomes

E sup
tij+1

≤t≤tij

|δY π
t |2 ≤ C1(tij − tij+1)

2
E sup

ij+1+1≤k≤ij

|δY π
tk
|2

(3.20)
+C2(E|δY

π
tij
|2 + |π|).

Using (3.20), we can obtain inductively

E sup
tij+1

≤t≤tij

|δY π
t |2

≤C1(tij − tij+1)
2
E sup

ij+1+1≤k≤ij

|δY π
tk
|2 +C2(E|δY

π
tij
|2 + |π|)

≤C1(tij − tij+1)
2 · · ·C1(tij − tij−1)

2
E|δY π

tij
|2
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+C2(E|δY
π
tij
|2 + |π|)

× (1 +C1(tij − tij+1)
2 +C1(tij − tij+1)

2C1(tij − tij+1+1)
2

+ · · ·+C1(tij − tij+1)
2C1(tij − tij+1+1)

2 · · ·C1(tij − tij−1)
2)(3.21)

≤ (C1(3δ)
2)ij−ij+1E|δY π

tij
|2

+C2(E|δY
π
tij
|2 + |π|)

× (1 +C1(3δ)
2 + (C1(3δ)

2)2 + · · ·+ (C1(3δ)
2)ij−ij+1)

≤ E|δY π
tij
|2 +

C2

1−C1(3δ)2
(E|δY π

tij
|2 + |π|)

≤ E|δY π
tij
|2 +2C2(E|δY

π
tij
|2 + |π|)

= (2C2 +1)E|δY π
tij
|2 + 2C2|π|.

By recurrence, we obtain

E sup
tij+1

≤t≤tij

|δY π
t |2

≤ (2C2 +1)j+1
E|δξπ|2 +C2|π|(1 + (2C2 + 1) + · · ·+ (2C2 + 1)j)

(3.22)
≤ (2C2 +1)l+1

E|δξπ|2 +C2|π|(1 + (2C2 +1) + · · ·+ (2C2 +1)l)

≤
3(2C2 + 1)l+1

2
(E|δξπ|2 + |π|).

Therefore, taking C = 3(2C2+1)l+1

2 , we obtain

E sup
0≤t≤T

|δY π
t |2 ≤ max

0≤j≤l
E sup

tij+1
≤t≤tij

|δY π
t |2 ≤C(|π|+E|ξ − ξπ|2).

Combining the above estimate with (3.6), we know that there exists a con-
stant K > 0 independent of the partition π, such that

E sup
0≤t≤T

|Yt − Y π
t |2 +E

∫ T

0
|Zt −Zπ

t |
2 dt≤K(|π|+E|ξ − ξπ|2).

�

Remark 3.2. The numerical scheme introduced before, as other similar
schemes, involves the computation of conditional expectations with respect
to the σ-field Fti+1 . To implement this scheme in practice we need to ap-
proximate these conditional expectations. Some work has been done to solve
this problem, and we refer the reader to the references [2, 4] and [8].

4. An implicit scheme for BSDEs. In this section, we propose an im-
plicit numerical scheme for the BSDE (1.1). Define the approximating pairs
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(Y π,Zπ) recursively by

Y π
tn = ξπ,

Y π
t = Y π

ti+1
+ f

(
ti+1, Y

π
ti+1

,
1

∆i

∫ ti+1

ti

Zπ
r dr

)
∆i −

∫ ti+1

t
Zπ
r dWr,(4.1)

t ∈ [ti, ti+1), i= n− 1, n− 2, . . . ,0,

where the partition π and ∆i, i= n−1, . . . ,0, are defined in Section 3, and ξπ

is an approximation of the terminal value ξ. In this recursive formula (4.1),
on each subinterval [ti, ti+1), i= n−1, . . . ,0, the nonlinear “generator” f con-
tains the information of Zπ on the same interval. In this sense, this formula is
different from formula (3.2), and (4.1) is an equation for {(Y π

t ,Zπ
t )}ti≤t<ti+1 .

When |π| is sufficiently small, the existence and uniqueness of the solution
to the above equation can be established. In fact, equation (4.1) is of the
following form:

Yt = ξ + g

(∫ b

a
Zr dr

)
−

∫ b

t
Zr dWr, t ∈ [a, b] and 0≤ a < b≤ T.(4.2)

For the BSDE (4.2), we have the following theorem.

Theorem 4.1. Let 0≤ a < b≤ T and p≥ 2. Let ξ be Fb-measurable and
ξ ∈ Lp(Ω). If there exists a constant L > 0 such that g : (Ω × R,Fb ⊗ B)→
(R,B) satisfies

|g(z1)− g(z2)| ≤L|z1 − z2|

for all z1, z2 ∈R and g(0) ∈ Lp(Ω), then there is a constant δ(p,L)> 0, such
that, when b − a < δ(p,L), equation (4.2) has a unique solution (Y,Z) ∈
Sp
F ([a, b])×Hp

F ([a, b]).

Proof. We shall use the fixed point theorem for the mapping from
Hp

F ([a, b]) into Hp
F([a, b]) which maps z to Z, where (Y,Z) is the solution of

the following BSDE:

Yt = ξ + g

(∫ b

a
zr dr

)
−

∫ b

t
Zr dWr, t ∈ [a, b].(4.3)

In fact, by the martingale representation theorem, there exist a progressively

measurable process Z = {Zt}a≤t≤b such that E
∫ b
a Z

2
t dt <∞ and

ξ + g

(∫ b

a
zr dr

)
= E

(
ξ + g

(∫ b

a
zr dr

)∣∣∣Fa

)
+

∫ b

a
Zt dWt.

By the integrability properties of ξ, g(0) and z, one can show that Z ∈

Hp
F ([a, b]). Define Yt = E(ξ + g(

∫ b
a zr dr)|Ft), t ∈ [a, b]. Then (Y,Z) satisfies

equation (4.3). Notice that Y is a martingale. Then by the Lipschitz condi-
tion on g, the integrability of ξ, g(0) and z, and Doob’s maximal inequality,
we can prove that Y ∈ Sp

F ([a, b]).
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Let z1, z2 be two elements in the Banach spaceHp
F ([a, b]), and let (Y 1,Z1),

(Y 2,Z2) be the associated solutions, that is,

Y i
t = ξ + g

(∫ b

a
zir dr

)
−

∫ b

t
Zi
r dWr, t ∈ [a, b], i= 1,2.

Denote

Ȳ = Y 1 − Y 2, Z̄ = Z1 −Z2, z̄ = z1 − z2.

Then

Ȳt = g

(∫ b

a
z1r dr

)
− g

(∫ b

a
z2r dr

)
−

∫ b

t
Z̄r dWr(4.4)

for all t ∈ [a, b]. So

Ȳt = E

(
g

(∫ b

a
z1r dr

)
− g

(∫ b

a
z2r dr

)∣∣∣Ft

)

for all t ∈ [a, b]. Thus by Doob’s maximal inequality, we have

E sup
a≤t≤b

|Ȳt|
p = E sup

a≤t≤b

∣∣∣∣E
(
g

(∫ b

a
z1r dr

)
− g

(∫ b

a
z2r dr

)∣∣∣Ft

)∣∣∣∣
p

≤ CE

∣∣∣∣g
(∫ b

a
z1r dr

)
− g

(∫ b

a
z2r dr

)∣∣∣∣
p

(4.5)

≤ CE

∣∣∣∣
∫ b

a
z1r dr−

∫ b

a
z2r dr

∣∣∣∣
p

≤ C(b− a)p/2E

(∫ b

a
|z̄r|

2 dr

)p/2

,

where C > 0 is a generic constant depending on L and p, which may vary
from line to line. From (4.4), it is easy to see

Ȳt = Ȳa +

∫ t

a
Z̄r dWr

for all t ∈ [a, b]. Therefore, by the Burkholder–Davis–Gundy inequality
and (4.5), we have

E

(∫ b

a
|Z̄r|

2 dr

)p/2

≤CE sup
a≤t≤b

∣∣∣∣
∫ t

a
Z̄r dWr

∣∣∣∣
p

≤C
[
E|Ȳa|

p +E sup
a≤t≤b

|Ȳt|
p
]

(4.6)

≤C(b− a)p/2E

(∫ b

a
|z̄r|

2 dr

)p/2

,
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that is,

‖Z̄‖Hp ≤C1(b− a)1/2‖z̄‖Hp ,

where C1 is a positive constant depending only on L and p.
Take δ(p,L) = 1/C2

1 . It is obvious that the mapping is a contraction when
b−a < δ(p,L), and hence there exists a unique solution (Y,Z) ∈ Sp

F([a, b])×
Hp

F ([a, b]) to the BSDE (4.2). �

Now we begin to study the convergence of the scheme (4.1).

Theorem 4.2. Let Assumption 2.2 be satisfied, and let π be any parti-
tion. Assume that ξπ ∈ Lp(Ω) and there exists a constant L1 > 0 such that,
for all t1, t2 ∈ [0, T ],

|f(t2, y, z)− f(t1, y, z)| ≤ L1|t2 − t1|
1/2.

Then, there are two positive constants δ and K independent of the parti-
tion π, such that, when |π|< δ, we have

E sup
0≤t≤T

|Yt − Y π
t |p +E

(∫ T

0
|Zt −Zπ

t |
2 dt

)p/2

≤K(|π|p/2 +E|ξ − ξπ|p).

Proof. If |π| < δ(p,L), where δ(p,L) is the constant in Theorem 4.1,
then Theorem 4.1 guarantees the existence and uniqueness of (Y π,Zπ). De-
note, for i= n− 1, n− 2, . . . ,0,

Z̃π
ti+1

=
1

ti+1 − tti

∫ ti+1

ti

Zπ
r dr.

Notice that {Z̃π
ti ,}i=n−1,n−2,...,0 here is different from that in Section 3. Then

Y π
ti = Y π

ti+1
+ f(ti+1, Y

π
ti+1

, Z̃π
ti+1

)∆i

−

∫ ti+1

ti

Zπ
r dWr, i= n− 1, n− 2, . . . ,0.

Recursively, we obtain

Y π
ti = ξπ +

n∑

k=i+1

f(tk, Y
π
tk
, Z̃π

tk
)∆k−1

−

∫ T

ti

Zπ
r dWr, i= n− 1, n− 2, . . . ,0.

Denote

δξπ = ξ − ξπ, δY π
t = Yt − Y π

t , δZπ
t = Zt −Zπ

t , t ∈ [0, T ],

and

Ẑπ
ti = Zti − Z̃π

ti , i= n− 1, . . . ,0.
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If t ∈ [ti, ti+1), i= n− 1, n− 2, . . . ,0, then by iteration, we have

δY π
t = δξπ +

n∑

k=i+1

[f(tk, Ytk ,Ztk)− f(tk, Y
π
tk
, Z̃π

tk
)]∆k−1

(4.7)

−

∫ T

ti

δZπ
r dWr +Rπ

t ,

where Rπ
t is exactly the same as that in Section 3.

Denote f̃π
tk
= f(tk, Ytk ,Ztk)−f(tk, Y

π
tk
, Z̃π

tk
). Then for t ∈ [ti, ti+1), i=n−1,

n− 2, . . . ,0, we have

δY π
t = E

(
δξπ +

n∑

k=i+1

f̃π
tk
∆k−1 +Rπ

t

∣∣∣Ft

)
.(4.8)

From equality (4.8) for tj ≤ t < tj+1, where i ≤ j ≤ n− 1, and taking into
account that δY π

T = δY π
tn = δξπ, we obtain

sup
ti≤t≤T

|δY π
t | ≤ sup

ti≤t≤T
E

(
n∑

k=i+1

|f̃π
tk
|∆k−1 + sup

0≤r≤T
|Rπ

r |+ |δξπ|
∣∣∣Ft

)
.

The above conditional expectation is a martingale if it is considered as a pro-
cess indexed by t for t ∈ [ti, T ]. Using Doob’s maximal inequality, (3.11), and
the Lipschitz condition on f , we have

E sup
ti≤t≤T

|δY π
t |p

≤ E sup
ti≤t≤T

[
E

(
n∑

k=i+1

|f̃π
tk
|∆k−1 + sup

0≤r≤T
|Rπ

r |+ |δξπ|
∣∣∣Ft

)]p

≤CE

(
n∑

k=i+1

|f̃π
tk
|∆k−1 + sup

0≤r≤T
|Rπ

r |+ |δξπ |

)p

≤C

{
E

(
n∑

k=i+1

|f̃π
tk
|∆k−1

)p

+ E sup
0≤r≤T

|Rπ
r |

p +E|δξπ|p

}

≤C

{
E

(
n∑

k=i+1

|δY π
tk
|∆k−1

)p

+ E

(
n∑

k=i+1

|Ẑπ
tk
|∆k−1

)p

+ |π|p/2 +E|δξπ|p

}

≤C

{
(T − ti)

p
E sup

i+1≤k≤n
|δY π

tk
|p

+E

(
n∑

k=i+1

|Ẑπ
tk
|∆k−1

)p

+ |π|p/2 +E|δξπ|p

}
,
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where, and in the following, C > 0 denotes a generic constant independent
of the partition π and may vary from line to line. On the other hand, we
have, by the Hölder continuity of Z given by (2.24),

E

(
n∑

k=i+1

|Ẑπ
tk
|∆k−1

)p

= E

(
n∑

k=i+1

∣∣∣∣Ztk −
1

∆k−1

∫ tk

tk−1

Zπ
r dr

∣∣∣∣∆k−1

)p

≤ E

(
n∑

k=i+1

∫ tk

tk−1

|Ztk −Zr|dr+

n∑

k=i+1

∫ tk

tk−1

|Zr −Zπ
r |dr

)p

≤C|π|p/2 +2p−1
E

(∫ T

ti

|Zr −Zπ
r |dr

)p

≤C|π|p/2 +2p−1(T − ti)
p/2

E

(∫ T

ti

|Zr −Zπ
r |

2 dr

)p/2

=C|π|p/2 +2p−1(T − ti)
p/2

E

(∫ T

ti

|δZπ
r |

2 dr

)p/2

.

Hence, we obtain

E sup
ti≤t≤T

|δY π
t |p

≤C1

{
(T − ti)

p
E sup

i+1≤k≤n
|δYtk |

p

(4.9)

+ (T − ti)
p/2

E

(∫ T

ti

|δZπ
r |

2 dr

)p/2

+ |π|p/2 +E|δξπ|p
}
,

where C1 is a constant independent of the partition π. By the Burkholder–
Davis–Gundy inequality, we have

E

(∫ T

ti

|δZπ
r |

2 dr

)p/2

≤ cpE

∣∣∣∣
∫ T

ti

δZπ
r dWr

∣∣∣∣
p

.(4.10)

From (4.7), we obtain
∫ T

ti

δZπ
r dWr = δξπ +

n∑

k=i+1

f̃π
tk
∆k−1 +Rπ

ti − δY π
ti .(4.11)
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Thus, from (4.10) and (4.11), we obtain

E

(∫ T

ti

|δZπ
r |

2 dr

)p/2

≤Cp

{
E

∣∣∣∣∣

n∑

k=i+1

f̃π
tk
∆k−1

∣∣∣∣∣

p

+E|δξπ|p + E|Rπ
ti |

p + E|δY π
ti |

p

}
.

Similar to (4.9), we have

E

(∫ T

ti

|δZπ
r |

2 dr

)p/2

≤C2

{
(T − ti)

p
E sup

i+1≤k≤n
|δYtk |

p

+ (T − ti)
p/2

E

(∫ T

ti

|δZπ
r |

2 dr

)p/2

+ |π|p/2 + E|δξπ|p
}
,

where C2 is a constant independent of the partition π.
If C2(T − ti)

p/2 < 1
2 , then we have

E

(∫ T

ti

|δZπ
r |

2 dr

)p/2

≤ 2C2(T − ti)
p
E sup

i+1≤k≤n
|δYtk |

p

(4.12)
+ 2C2(|π|

p/2 + E|δξπ|p).

Substituting (4.12) into (4.9), we have

E sup
ti≤t≤T

|δY π
t |p

≤C1(1 + 2C2(T − ti)
p/2)(T − ti)

p
E sup

i+1≤k≤n
|δYtk |

p

(4.13)
+C1(1 + 2C2(T − ti)

p/2)(|π|p/2 +E|δξπ|p)

≤ 2C1(T − ti)
p
E sup

i+1≤k≤n
|δYtk |

p +2C1(|π|
p/2 +E|δξπ|p).

We can find a positive constant δ < δ(p,L) independent of the partition π,
such that,

C2(3δ)
p/2 < 1

2 ,(4.14)

2C1(3δ)
p < 1

2(4.15)

and T > 2δ. Denote l = [ T2δ ]. Then l ≥ 1 is an integer independent of the
partition π. If |π|< δ, then for the partition π we can choose n−1> i1 > i2 >
· · ·> il ≥ 0, such that, T − 2δ ∈ (ti1−1, ti1 ], T − 4δ ∈ (ti2−1, ti2 ], . . . , T − 2δl ∈
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[0, til ] (with t−1 = 0). For simplicity, we denote ti0 = T and til+1
= 0. Each

interval [tij+1 , tij ], j = 0,1, . . . , l, has length less than 3δ, that is, |tij − tij+1 |<
3δ. On [tij+1 , tij ], we consider the recursive formula (4.1). Then (4.13)–(4.15)
yield

E sup
tij+1

≤t≤tij

|δY π
t |p

≤ 2C1(tij − tij+1)
p
E sup

ij+1+1≤k≤ij

|δYtk |
p +2C1(|π|

p/2 +E|δY π
tij
|p)

(4.16)
≤ 2C1(3δ)

p
E sup

ij+1+1≤k≤ij

|δYtk |
p + 2C1(|π|

p/2 + E|δY π
tij
|p)

≤
1

2
sup

ij+1+1≤k≤ij

|δYtk |
p + 2C1(|π|

p/2 + E|δY π
tij
|p).

As in the proof of (3.21) and (3.22), we have

E sup
tij+1

≤t≤tij

|δY π
t |p ≤ (4C1 + 1)E|δY π

tij
|p + 4C1|π|

p/2

and

E sup
tij+1

≤t≤tij

|δY π
t |p ≤

3(4C1 + 1)l+1

2
(E|δξπ|2 + |π|p/2).

Therefore, we obtain

E sup
0≤t≤T

|δY π
t |p ≤ max

0≤j≤l
E sup

tij+1
≤t≤tij

|δY π
t |p

(4.17)

≤
3(4C1 + 1)l+1

2
(E|δξπ|p + |π|p/2).

On [tij+1 , tij ], j = 0,1, . . . , l, based on the recursive formula (4.1) and (4.17),
inequality (4.12) becomes

E

(∫ tij

tij+1

|δZπ
r |

2 dr

)p/2

≤ 2C2(tij − tij+1)
p
E sup

ij+1+1≤k≤ij

|δYtk |
p +2C2(|π|

p/2 +E|δξπ|p)

≤ 2C2(3δ)
p
E sup

ij+1+1≤k≤ij

|δYtk |
p +2C2(|π|

p/2 +E|δξπ|p)

≤
1

2
E sup

ij+1+1≤k≤ij

|δYtk |
p +2C2(|π|

p/2 +E|δξπ|p)

≤

(
3(4C1 +1)l+1

4
+ 2C2

)
(|π|p/2 +E|δξπ|p).
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Thus

E

(∫ T

0
|δZπ

t |
2 dt

)p/2

= E

(
l∑

j=0

∫ tij

tij+1

|δZπ
t |

2 dt

)p/2

(4.18)

≤ (l+1)p/2−1
l∑

j=0

E

(∫ tij

tij+1

|δZπ
t |

2 dt

)p/2

≤ (l+1)p/2
(
3(4C1 +1)l+1

4
+ 2C2

)
(|π|p/2 +E|δξπ|p).

Combining (4.17) and (4.18), we know that there exists a constant

K = (l+ 1)p/2
(
3(4C1 +1)l+1

2
+ 4C2

)

independent of the partition π, such that

E sup
0≤t≤T

|Yt − Y π
t |p +E

(∫ T

0
|Zt −Zπ

t |
2 dt

)p/2

≤K(|π|p/2 +E|ξ − ξπ|p). �

Remark 4.3. The advantages of this implicit numerical scheme are:

(i) we can obtain the rate of convergence in Lp sense;
(ii) the partition π can be arbitrary (|π| should be small enough) without

assuming max0≤i≤n−1∆i/∆i+1 ≤L1.

5. A new discrete scheme. For all the numerical schemes considered in
Sections 3 and 4, one needs to evaluate processes {Zπ

t }0≤t≤T with continuous
index t. In this section, we use the representation of Z in terms of the
Malliavin derivative of Y to derive a completely discrete scheme.

From (2.21), {DθYt}0≤θ≤t≤T can be represented as

DθYt = E

(
ρt,TDθξ +

∫ T

t
ρt,rDθf(r,Yr,Zr)dr

∣∣∣Ft

)
,(5.1)

where

ρt,r = exp

{∫ r

t
βs dWs +

∫ r

t

(
αs −

1

2
β2
s

)
ds

}
(5.2)

with αs = ∂yf(s,Ys,Zs) and βs = ∂zf(s,Ys,Zs).
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Using that Zt =DtYt, µ× P a.e., from (1.1), (5.1) and (5.2), we propose
the following numerical scheme. We define recursively

Y π
tn = ξ, Zπ

tn =DT ξ,

Y π
ti = E(Y π

ti+1
+ f(ti+1, Y

π
ti+1

,Zπ
ti+1

)∆i|Fti),
(5.3)

Zπ
ti = E

(
ρπti+1,tnDtiξ +

n−1∑

k=i

ρπti+1,tk+1
Dtif(tk+1, Y

π
tk+1

,Zπ
tk+1

)∆k

∣∣∣Fti

)
,

i= n− 1, n− 2, . . . ,0,

where ρπti,ti = 1, i= 0,1, . . . , n, and for 0≤ i < j ≤ n,

ρπti,tj = exp

{
j−1∑

k=i

∫ tk+1

tk

∂zf(r,Y
π
tk
,Zπ

tk
)dWr

(5.4)

+

j−1∑

k=i

∫ tk+1

tk

(
∂yf(r,Y

π
tk
,Zπ

tk
)−

1

2
[∂zf(r,Y

π
tk
,Zπ

tk
)]2
)
dr

}
.

An alternative expression for ρπti,tj is given by the following formula:

ρπti,tj = exp

{
j−1∑

k=i

∂zf(tk, Y
π
tk
,Zπ

tk
)(Wtk+1

−Wtk)

(5.5)

+

j−1∑

k=i

(
∂yf(tk, Y

π
tk
,Zπ

tk
)−

1

2
[∂zf(tk, Y

π
tk
,Zπ

tk
)]2
)
∆k

}
.

However, we will only consider the scheme (5.3) with ρπti,tj given by (5.4).
We make the following assumptions:

(G1) f(t, y, z) is deterministic, which implies Dθf(t, y, z) = 0.
(G2) f(t, y, z) is linear with respect to y and z; namely, there are three

functions g(t), h(t) and f1(t) such that

f(t, y, z) = g(t)y + h(t)z + f1(t).

Assume that g, h are bounded and f1 ∈ L2([0, T ]). Moreover, there exists
a constant L2 > 0, such that, for all t1, t2 ∈ [0, T ],

|g(t2)− g(t1)|+ |h(t2)− h(t1)|+ |f1(t2)− f1(t1)| ≤ L|t2 − t1|
1/2.

(G3) E sup0≤θ≤T |Dθξ|
r <∞, for all r ≥ 1.

Notice that (G1) and (G2) imply (ii) and (iii) in Assumption 2.2.

Remark 5.1. We propose condition (G1) in order to simplify
{Zπ

ti}i=n−1,...,0 in formula (5.3). In fact, there are some difficulties in general-
izing the condition (G)s, especially (G1), to a forward–backward stochastic
differential equation (FBSDE, for short) case.
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If we consider a FBSDE




Xt =X0 +

∫ t

0
b(r,Xr)dr+

∫ t

0
σ(r,Xr)dWr,

Yt = ξ +

∫ T

t
f(r,Xr, Yr,Zr)dr−

∫ T

t
Zr dWr,

where X0 ∈R, and the functions b, σ, f are deterministic, then under some
appropriate conditions [e.g., (h1)–(h4) in Example 2.11] Zπ

ti for i = n −
1, . . . ,0 in (5.3) is of the form

Zπ
ti = E

(
ρπti+1,tnDtiξ

+

n−1∑

k=i

ρπti+1,tk+1
∂xf(tk+1,X

π
tk+1

, Y π
tk+1

,Zπ
tk+1

)DtiX
π
tk+1

∆k

∣∣∣Fti

)
,

where (Xπ, Y π,Zπ) is a certain numerical scheme for (X,Y,Z). It is hard to
guarantee the existence and the convergence of Malliavin derivative of Xπ,
and therefore, the convergence of Zπ is difficult to derive.

Theorem 5.2. Let Assumption 2.2(i) and assumptions (G1)–(G3) be
satisfied. Then there are positive constants K and δ independent of the par-
tition π, such that, when |π|< δ we have

E max
0≤i≤n

{|Yti − Y π
ti |

p + |Zti −Zπ
ti |

p} ≤K|π|p/2−p/(2 log(1/|π|))

(
log

1

|π|

)p/2

.

Proof. In the proof, C > 0 will denote a constant independent of the
partition π, which may vary from line to line. Under the assumption (G1),
we can see that

Zπ
ti = E(ρπti+1,tnDtiξ|Fti), i= n− 1, n− 2, . . . ,0.(5.6)

Denote, for i= n− 1, n− 2, . . . ,0,

δZπ
ti = Zti −Zπ

ti , δY π
ti = Yti − Y π

ti .

Since |ex − ey| ≤ (ex + ey)|x− y|, we deduce, for all i= n− 1, n− 2, . . . ,0,

|δZπ
ti |= |E(ρti,tnDtiξ|Fti)−E(ρπti+1,tnDtiξ|Fti)|

≤ E(|ρti,tn − ρπti+1,tn ||Dtiξ||Fti)

≤ E

(
|Dtiξ|(ρti,tn + ρπti+1,tn)

×

∣∣∣∣
∫ T

ti

h(r)dWr +

∫ T

ti

g(r)dr−
1

2

∫ T

ti

h(r)2 dr
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−
n−1∑

k=i+1

∫ tk+1

tk

h(r)dWr −
n−1∑

k=i+1

∫ tk+1

tk

g(r)dr

+
1

2

n−1∑

k=i+1

∫ tk+1

tk

h(r)2 dr

∣∣∣∣
∣∣∣Fti

)

≤ E

(
|Dtiξ|(ρti,tn + ρπti+1,tn)

×

[∣∣∣∣
∫ ti+1

ti

h(r)dWr

∣∣∣∣+
∫ ti+1

ti

|g(r)|dr

+
1

2

∫ ti+1

ti

h(r)2 dr

]∣∣∣Fti

)
.

From (G2), we have

|Dtiξ|ρ
π
ti+1,tn

≤ |Dtiξ| exp

{∫ T

ti+1

h(r)dWr +

n−1∑

k=i+1

∫ tk+1

tk

g(r)dr −
1

2

∫ T

ti+1

h(r)2 dr

}

≤C1

(
sup

0≤θ≤T
|Dθξ|

)(
sup

0≤t≤T
exp

{∫ T

t
h(r)dWr

})
,

where C1 > 0 is a constant independent of the partition π.
In the same way, we obtain

|Dtiξ|ρti,tn <C1

(
sup

0≤θ≤T
|Dθξ|

)(
sup

0≤t≤T
exp

{∫ T

t
h(r)dWr

})
.

Thus for i= n− 1, n− 2, . . . ,0,

|δZπ
ti | ≤ 2C1E

((
sup

0≤θ≤T
|Dθξ|

)(
sup

0≤t≤T
exp

{∫ T

t
h(r)dWr

})

×

[∣∣∣∣
∫ ti+1

ti

h(r)dWr

∣∣∣∣+
∫ ti+1

ti

|g(r)|dr+
1

2

∫ ti+1

ti

h(r)2 dr

]∣∣∣Fti

)

≤ 2C1E

((
sup

0≤θ≤T
|Dθξ|

)(
sup

0≤t≤T
exp

{∫ T

t
h(r)dWr

})

×

[
sup

0≤k≤n−1

∣∣∣∣
∫ tk+1

tk

h(r)dWr

∣∣∣∣+ sup
0≤k≤n−1

∫ tk+1

tk

|g(r)|dr

+
1

2
sup

0≤k≤n−1

∫ tk+1

tk

h(r)2 dr

]∣∣∣Fti

)
.
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The right-hand side of the above inequality is a martingale as a process
indexed by i= n− 1, n− 2, . . . ,0.

Let ηt = exp{−
∫ t
0 h(u)dWu}. Then, ηt satisfies the following linear stochas-

tic differential equation:
{
dηt =−h(t)ηt dWt +

1
2h(t)

2ηtdt,
η0 = 1.

By (G1), (G2), the Hölder inequality and Lemma 2.4, it is easy to show
that, for any r ≥ 0,

E

(
sup

0≤t≤T
exp

{∫ T

t
h(u)dWu

})r

= E

(
exp

{∫ T

0
h(u)dWu

}
sup

0≤t≤T
exp

{
−

∫ t

0
h(u)dWu

})r

≤

(
E exp

{
2r

∫ T

0
h(u)dWu

})1/2

(5.7)

×

(
E sup

0≤t≤T
exp

{
−2r

∫ t

0
h(u)dWu

})1/2

= exp

{
r2
∫ T

0
h(u)2 dr

}(
E sup

0≤t≤T
η2rt

)1/2
<∞.

For any p′ ∈ (p, q2), by Doob’s maximal inequality and the Hölder inequality,
(G3) and (5.7), we have

E sup
0≤i≤n

|δZπ
ti |

p

≤CE

((
sup

0≤θ≤T
|Dθξ|

)p(
sup

0≤t≤T
exp

{∫ T

t
h(r)dWr

})p

×

[
sup

0≤k≤n−1

∣∣∣∣
∫ tk+1

tk

h(r)dWr

∣∣∣∣

+ sup
0≤k≤n−1

∫ tk+1

tk

|g(r)|dr +
1

2
sup

0≤k≤n−1

∫ tk+1

tk

h(r)2 dr

]p)

≤C

[
E

((
sup

0≤θ≤T
|Dθξ|

)pp′/(p′−p)

×

(
sup

0≤t≤T
exp

{∫ T

t
h(r)dWr

})pp′/(p′−p))](p′−p)/p′

×

[
E

(
sup

0≤k≤n−1

∣∣∣∣
∫ tk+1

tk

h(r)dWr

∣∣∣∣+ sup
0≤k≤n−1

∫ tk+1

tk

|g(r)|dr
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+
1

2
sup

0≤k≤n−1

∫ tk+1

tk

h(r)2 dr

)p′]p/p′

≤C
[
E

(
sup

0≤θ≤T
|Dθξ|

)2pp′/(p′−p)]p′/(2(p′−p))

×

[
E

(
sup

0≤t≤T
exp

{∫ T

t
h(r)dWr

})2pp′/(p′−p)]p′/(2(p′−p))

×

[
E sup

0≤k≤n−1

∣∣∣∣
∫ tk+1

tk

h(r)dWr

∣∣∣∣
p′

+E sup
0≤k≤n−1

(∫ tk+1

tk

|g(r)|dr

)p′

+E sup
0≤k≤n−1

(∫ tk+1

tk

h(r)2 dr

)p′]p/p′

=C[I1 + I2 + I3]
p/p′ .

For any r > 1, by the Hölder inequality we can obtain

I1 = E sup
0≤k≤n−1

∣∣∣∣
∫ tk+1

tk

h(r)dWr

∣∣∣∣
p′

≤

{
E sup

0≤k≤n−1

∣∣∣∣
∫ tk+1

tk

h(r)dWr

∣∣∣∣
p′r}1/r

≤

{
E

n−1∑

k=0

∣∣∣∣
∫ tk+1

tk

h(r)dWr

∣∣∣∣
p′r
}1/r

.

For any centered Gaussian variable X , and any γ ≥ 1, we know that

E|X|γ ≤ C̃γγγ/2(E|X|2)γ/2,

where C̃ is a constant independent of γ. Thus, we can see that

I1 ≤

(
C̃p′r(p′r)p

′r/2
n−1∑

i=0

(∫ ti+1

ti

h(r)2 dr

)p′r/2
)1/r

≤Crp
′/2|π|p

′/2−1/r.

Take r= 2 log(1/|π|)
p′ . Assume |π| is small enough; then we have

I1 ≤C|π|p
′/2−p′/(2 log(1/|π|))

(
log

1

|π|

)p′/2

.

It is easy to see that

I2 = E sup
0≤k≤n−1

(∫ tk+1

tk

|g(r)|dr

)p′

≤C|π|p
′

and

I3 = E sup
0≤k≤n−1

(∫ tk+1

tk

h(r)2 dr

)p′

≤C|π|p
′

.
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Consequently, we obtain

E sup
0≤i≤n

|δZπ
ti |

p ≤C|π|p/2−p/(2 log(1/|π|))

(
log

1

|π|

)p/2

.(5.8)

Applying recursively the scheme given by (5.3), we obtain

Y π
ti = E

(
ξ +

n∑

k=i+1

f(tk, Y
π
tk
,Zπ

tk
)∆k−1

∣∣∣Fti

)
, i= n− 1, n− 2, . . . ,0.

Therefore, for i= n− 1, n− 2, . . . ,0,

|δY π
ti | ≤ E

(
n∑

k=i+1

|f(tk, Ytk ,Ztk)− f(tk, Y
π
tk
,Zπ

tk
)|∆k−1 + |Rπ

ti |+ |δξπ |
∣∣∣Fti

)
,

where Rπ
t is exactly the same as in Section 3 and δξπ = ξ − ξ = 0. In fact,

we keep the term δξπ to indicate the role it plays as the terminal value.
For j = n− 1, n− 2, . . . , i, we have

|δY π
tj | ≤ E

(
n∑

k=i+1

|f(tk, Ytk ,Ztk)− f(tk, Y
π
tk
,Zπ

tk
)|∆k−1

+ sup
0≤t≤T

|Rπ
t |+ |δξπ|

∣∣∣Ftj

)
.

By Doob’s maximal inequality and (5.8), we obtain

E sup
i≤j≤n

|δY π
tj |

p

≤CE

(
n∑

k=i+1

|f(tk, Ytk ,Ztk)− f(tk, Y
π
tk
,Zπ

tk
)|∆k−1

)p

+C(|π|p/2 +E|δξπ|p)

≤C

{
E

(
n∑

k=i+1

|Ytk − Y π
tk
|∆k−1

)p

+ E

(
n∑

k=i+1

|Ztk −Zπ
tk
|∆k−1

)p}

+C(|π|p/2 +E|δξπ|p)

≤C2(T − ti)
p
E sup

i+1≤k≤n
|Ytk − Y π

tk
|p

+C3

(
|π|p/2−p/(2 log(1/|π|))

(
log

1

|π|

)p/2

+E|δξπ|p
)
,

where C2 and C3 are constants independent of the partition π.
We can obtain the estimate for Emax0≤i≤n|Yti − Y π

ti |
p by using simi-

lar arguments to analyze (4.13) in Theorem 4.2 to get the estimate for
E sup0≤t≤T |Yt − Y π

t |. �
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