673 research outputs found

    OysterNet: Enhanced Oyster Detection Using Simulation

    Full text link
    Oysters play a pivotal role in the bay living ecosystem and are considered the living filters for the ocean. In recent years, oyster reefs have undergone major devastation caused by commercial over-harvesting, requiring preservation to maintain ecological balance. The foundation of this preservation is to estimate the oyster density which requires accurate oyster detection. However, systems for accurate oyster detection require large datasets obtaining which is an expensive and labor-intensive task in underwater environments. To this end, we present a novel method to mathematically model oysters and render images of oysters in simulation to boost the detection performance with minimal real data. Utilizing our synthetic data along with real data for oyster detection, we obtain up to 35.1% boost in performance as compared to using only real data with our OysterNet network. We also improve the state-of-the-art by 12.7%. This shows that using underlying geometrical properties of objects can help to enhance recognition task accuracy on limited datasets successfully and we hope more researchers adopt such a strategy for hard-to-obtain datasets

    Whale Detection Enhancement through Synthetic Satellite Images

    Full text link
    With a number of marine populations in rapid decline, collecting and analyzing data about marine populations has become increasingly important to develop effective conservation policies for a wide range of marine animals, including whales. Modern computer vision algorithms allow us to detect whales in images in a wide range of domains, further speeding up and enhancing the monitoring process. However, these algorithms heavily rely on large training datasets, which are challenging and time-consuming to collect particularly in marine or aquatic environments. Recent advances in AI however have made it possible to synthetically create datasets for training machine learning algorithms, thus enabling new solutions that were not possible before. In this work, we present a solution - SeaDroneSim2 benchmark suite, which addresses this challenge by generating aerial, and satellite synthetic image datasets to improve the detection of whales and reduce the effort required for training data collection. We show that we can achieve a 15% performance boost on whale detection compared to using the real data alone for training, by augmenting a 10% real data. We open source both the code of the simulation platform SeaDroneSim2 and the dataset generated through it

    MFI2-AS1 enhances the survival of esophageal cancer cell via regulation of miR-331-3p/SOX4

    Get PDF
    Purpose: To investigate the specific role of melanotransferrin antisense RNA (MFI2-AS1) in esophageal cancer (EC) progression. Methods: The differential expression of MFI2-AS1 in EC tissues and cells was determined using quantitative reverse transcription–polymerase chain reaction (qRT-PCR). Silencing MFI2-AS1 was performed by transfection with specific short hairpin RNAs targeting MFI2-AS1. The 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and flow cytometry (FC) were used to assess cell viability and apoptosis of EC cells, respectively. The sponging microRNA (miRNA) of MFI2-AS1 was validated using luciferase activity and RNA immunoprecipitation assays while the downstream target gene of the sponging miRNA was evaluated by luciferase activity assay. Results: MFI2-AS1 was significantly enhanced in EC tissues (p < 0.01) and indicated a poor prognosis in EC patients. Knockdown of MFI2-AS1 in EC cells decreased cell viability and promoted cell apoptosis of EC cells. Functionally, MFI2-AS1 targeted miR-331-3p, and sex-determining region on Ychromosome-related high-mobility-group box4 (SOX4) was identified as a target gene of miR-331-3p. Ectopic expression of SOX4  counteracted the suppressive effect of MFI2-AS1 knockdown on EC cell viability and stimulative effect on EC cell apoptosis. Conclusion: The pro-oncogenic effect of MFI2-AS1 on EC progression occurs via the regulation of the miR-331-3p/SOX4 axis, providing a new potential therapeutic target for EC

    GENET: Unleashing the Power of Side Information for Recommendation via Hypergraph Pre-training

    Full text link
    Recommendation with side information has drawn significant research interest due to its potential to mitigate user feedback sparsity. However, existing models struggle with generalization across diverse domains and types of side information. In particular, three challenges have not been addressed, and they are (1) the diverse formats of side information, including text sequences. (2) The diverse semantics of side information that describes items and users from multi-level in a context different from recommendation systems. (3) The diverse correlations in side information to measure similarity over multiple objects beyond pairwise relations. In this paper, we introduce GENET (Generalized hypErgraph pretraiNing on sidE informaTion), which pre-trains user and item representations on feedback-irrelevant side information and fine-tunes the representations on user feedback data. GENET leverages pre-training as a means to prevent side information from overshadowing critical ID features and feedback signals. It employs a hypergraph framework to accommodate various types of diverse side information. During pre-training, GENET integrates tasks for hyperlink prediction and self-supervised contrast to capture fine-grained semantics at both local and global levels. Additionally, it introduces a unique strategy to enhance pre-training robustness by perturbing positive samples while maintaining high-order relations. Extensive experiments demonstrate that GENET exhibits strong generalization capabilities, outperforming the SOTA method by up to 38% in TOP-N recommendation and Sequential recommendation tasks on various datasets with different side information

    Topic Shift Detection in Chinese Dialogues: Corpus and Benchmark

    Full text link
    Dialogue topic shift detection is to detect whether an ongoing topic has shifted or should shift in a dialogue, which can be divided into two categories, i.e., response-known task and response-unknown task. Currently, only a few investigated the latter, because it is still a challenge to predict the topic shift without the response information. In this paper, we first annotate a Chinese Natural Topic Dialogue (CNTD) corpus consisting of 1308 dialogues to fill the gap in the Chinese natural conversation topic corpus. And then we focus on the response-unknown task and propose a teacher-student framework based on hierarchical contrastive learning to predict the topic shift without the response. Specifically, the response at high-level teacher-student is introduced to build the contrastive learning between the response and the context, while the label contrastive learning is constructed at low-level student. The experimental results on our Chinese CNTD and English TIAGE show the effectiveness of our proposed model
    corecore