213 research outputs found

    Supercritical and ultrasupercritical coal-fired power generation

    Get PDF
    Pulverized coal combustion (PC) is the most widely used technology in coal-fired power plants globally. The technology’s developments in the past decades have primarily involved increasing plant thermal efficiencies by raising the steam pressure and temperature. Based on the differences in temperature and pressure, the technology is categorized into three tiers: subcritical, supercritical (SC) and ultrasupercritical (USC).Coal consistently contributes to over 75% of electricity in China (China Bureau of Statistics 2009). To meet its ever growing demands for electricity, China has seen rapid growth of coal-fired power generation. From 2003 to 2009 the country more than doubled its coal-fired generation capacity, making its fleet the largest in the world. However, the fuel consumption per unit of electricity generated during this period has steadily decreased (Figure 3). The use of SC/USC technology has significantly contributed to the improvement of energy efficiency. In 2004 China surpassed the U.S. in average fleet efficiency (EIA 2009). As SC/USC continues to be the plant type of choice for coal burning in China, average fleet efficiency will continue to increase over time

    China, the United States, and the Climate Change Challenge

    Get PDF
    Outlines China's climate change policy, U.S. concerns about transfer of carbon-intensive jobs to China and ways to address them, ways for U.S. policy and legislation to spur China's adoption of clean technologies, and specific mechanisms for cooperation

    Efficiency in the steel sector

    Get PDF
    The iron and steel sector consumes about 19% of global final energy use and accounts for a quarter of direct CO2 emissions from industry and roughly 4.5% of global CO2 emissions (WSA 2008a). Steel production is very energy intensive with 20% to 40% of the cost of steel production derived from energy expenses (WSA 2008a). On average every ton of primary steel produced in a blast furnace results in one-and-a-half to two tons of direct CO2 emissions in OECD countries (ArcelorMittal 2008). The energy efficiency of steelmaking facilities differ greatly depending on production route, type of iron ore and coal used, the steel product mix, operation control technology, and material efficiency (WSA 2008b)

    Tunable Nanodielectric Composites

    Get PDF
    This paper presents a progress update with the development of nanodielectric composites with electric field tunability for various high energy, high power electrical applications. It is demonstrated that nonlinear electrical/dielectric properties can be achieved via the nanostructure and interface engineering. A high level summary was given on the progress achieved as well as challenges remaining in nanodielectric engineering towards high energy density capacitors for energy storage and conversion, nonlinear dielectrics for tunable device, and high voltage varistor for surge suppression

    Predictive model for diabetic retinopathy under limited medical resources: A multicenter diagnostic study

    Get PDF
    BackgroundComprehensive eye examinations for diabetic retinopathy is poorly implemented in medically underserved areas. There is a critical need for a widely available and economical tool to aid patient selection for priority retinal screening. We investigated the possibility of a predictive model for retinopathy identification using simple parameters.MethodsClinical data were retrospectively collected from 4, 159 patients with diabetes admitted to five tertiary hospitals. Independent predictors were identified by univariate analysis and least absolute shrinkage and selection operator (LASSO) regression, and a nomogram was developed based on a multivariate logistic regression model. The validity and clinical practicality of this nomogram were assessed using concordance index (C-index), area under the receiver operating characteristic curve (AUROC), calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC).ResultsThe predictive factors in the multivariate model included the duration of diabetes, history of hypertension, and cardiovascular disease. The three-variable model displayed medium prediction ability with an AUROC of 0.722 (95%CI 0.696-0.748) in the training set, 0.715 (95%CI 0.670-0.754) in the internal set, and 0.703 (95%CI 0.552-0.853) in the external dataset. DCA showed that the threshold probability of DR in diabetic patients was 17-55% according to the nomogram, and CIC also showed that the nomogram could be applied clinically if the risk threshold exceeded 30%. An operation interface on a webpage (https://cqmuxss.shinyapps.io/dr_tjj/) was built to improve the clinical utility of the nomogram.ConclusionsThe predictive model developed based on a minimal amount of clinical data available to diabetic patients with restricted medical resources could help primary healthcare practitioners promptly identify potential retinopathy

    Atomic-Scale Tracking Phase Transition Dynamics of Berezinskii-Kosterlitz-Thouless Polar Vortex-Antivortex

    Full text link
    Particle-like topologies, such as vortex-antivortex (V-AV) pairs, have garnered significant attention in the field of condensed matter. However, the detailed phase transition dynamics of V-AV pairs, as exemplified by self-annihilation, motion, and dissociation, have yet to be verified in real space due to the lack of suitable experimental techniques. Here, we employ polar V-AV pairs as a model system and track their transition pathways at atomic resolution with the aid of in situ (scanning) transmission electron microscopy and phase field simulations. We demonstrate the absence of a Berezinskii-Kosterlitz-Thouless phase transition between the room-temperature quasi-long-range ordered ground phase and the high-temperature disordered phase. Instead, we observe polarization suppression in bound V-AV pairs as the temperature increases. Furthermore, electric fields can promote the vortex and antivortex to approach each other and annihilate near the interface. The elucidated intermediate dynamic behaviors of polar V-AV pairs under thermal- and electrical-fields lay the foundation for their potential applications in electronic devices. Moreover, the dynamic behaviors revealed at atomic scale provide us new insights into understanding topological phase of matter and their topological phase transitions.Comment: 19 pages and 4 figure

    “Low-risk groups” deserve more attention than “high-risk groups” in imported COVID-19 cases

    Get PDF
    ObjectiveTo estimate the optimal quarantine period for inbound travelers and identify key risk factors to provide scientific reference for emerging infectious diseases.MethodsA parametric survival analysis model was used to calculate the time interval between entry and first positive nucleic acid test of imported cases in Guangzhou, to identify the influencing factors. And the COVID-19 epidemic risk prediction model based on multiple risk factors among inbound travelers was constructed.ResultsThe approximate 95th percentile of the time interval was 14 days. Multivariate analysis found that the mean time interval for inbound travelers in entry/exit high-risk occupations was 29% shorter (OR 0.29, 95% CI 0.18–0.46, p < 0.0001) than that of low-risk occupations, those from Africa were 37% shorter (OR 0.37, 95% CI 0.17–0.78, p = 0.01) than those from Asia, those who were fully vaccinated were 1.88 times higher (OR 1.88, 95% CI 1.13–3.12, p = 0.01) than that of those who were unvaccinated, and those in other VOC periods were lower than in the Delta period. Decision tree analysis showed that a combined entry/exit low-risk occupation group with Delta period could create a high indigenous epidemic risk by 0.24.ConclusionDifferent strata of imported cases can result in varying degrees of risk of indigenous outbreaks. “low-risk groups” with entry/exit low-risk occupations, fully vaccinated, or from Asia deserve more attention than “high-risk groups.

    Polysaccharide Extracted from Laminaria japonica

    Get PDF
    This study aimed to determine the effect of topically applied Laminaria polysaccharide (LP) on skin aging. We applied ointment containing LP (10, 25, and 50 μg/g) or vitamin E (10 μg/g) to the dorsal skin of aging mice for 12 months and young control mice for 4 weeks. Electron microscopy analysis of skin samples revealed that LP increased dermal thickness and skin collagen content. Tissue inhibitor of metalloprotease- (TIMP-) 1 expression was upregulated while that of matrix metalloproteinase- (MMP-) 1 was downregulated in skin tissue of LP-treated as compared to untreated aging mice. Additionally, phosphorylation of c-Jun N-terminal kinase (JNK) and p38 was higher in aging skin than in young skin, while LP treatment suppressed phospho-JNK expression. LP application also enhanced the expression of antioxidative enzymes in skin tissue, causing a decrease in malondialdehyde levels and increases in superoxide dismutase, catalase, and glutathione peroxidase levels relative to those in untreated aging mice. These results indicate that LP inhibits MMP-1 expression by preventing oxidative stress and JNK phosphorylation, thereby delaying skin collagen breakdown during aging
    • …
    corecore