843 research outputs found

    Cascaded Entanglement Enhancement

    Full text link
    We present a cascaded system consisting of three non-degenerate optical parametric amplifiers (NOPAs) for the generation and the enhancement of quantum entanglement of continuous variables. The entanglement of optical fields produced by the first NOPA is successively enhanced by the second and the third NOPAs from -5.3 dBdB to -8.1 dBdB below the quantum noise limit. The dependence of the enhanced entanglement on the physical parameters of the NOPAs and the reachable entanglement limitation for a given cascaded NOPA system are calculated. The calculation results are in good agreement with the experimental measurements.Comment: 5 pages, 4 figure

    Error analysis of a first-order IMEX scheme for the logarithmic Schr\"odinger equation

    Full text link
    The logarithmic Schr\"odinger equation (LogSE) has a logarithmic nonlinearity f(u)=ulnu2f(u)=u\ln |u|^2 that is not differentiable at u=0.u=0. Compared with its counterpart with a regular nonlinear term, it possesses richer and unusual dynamics, though the low regularity of the nonlinearity brings about significant challenges in both analysis and computation. Among very limited numerical studies, the semi-implicit regularized method via regularising f(u)f(u) as uεln(ε+uε)2 u^{\varepsilon}\ln ({\varepsilon}+ |u^{\varepsilon}|)^2 to overcome the blowup of lnu2\ln |u|^2 at u=0u=0 has been investigated recently in literature. With the understanding of f(0)=0,f(0)=0, we analyze the non-regularized first-order Implicit-Explicit (IMEX) scheme for the LogSE. We introduce some new tools for the error analysis that include the characterization of the H\"older continuity of the logarithmic term, and a nonlinear Gr\"{o}nwall's inequality. We provide ample numerical results to demonstrate the expected convergence. We position this work as the first one to study the direct linearized scheme for the LogSE as far as we can tell.Comment: 19 pages, 5 figure

    Some Weak Convergence Theorems for a Family of Asymptotically Nonexpansive Nonself Mappings

    Full text link
    A one-step iteration with errors is considered for a family of asymptotically nonexpansive nonself mappings. Weak convergence of the purposed iteration is obtained in a Banach space

    Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating

    Get PDF
    We experimentally demonstrate graphene-plasmon polariton excitation in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The subwavelength silicon grating is fabricated by a nanosphere lithography technique with a self-assembled nanosphere array as a template. Measured transmission spectra illustrate the excitation of graphene-plasmon polaritons, which is further supported by numerical simulations and theoretical prediction of plasmonband diagrams. Our grating-assisted coupling to graphene-plasmon polaritons forms an important platform for graphene-based opto-electronics applications.Comment: 13 pages, 4 figures, revised version accepted by AP

    Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables

    Full text link
    The unconditional entanglement swapping for continuous variables is experimentally demonstrated. Two initial entangled states are produced from two nondegenerate optical parametric amplifiers operating at deamplification. Through implementing the direct measurement of Bell-state between two optical beams from each amplifier the remaining two optical beams, which have never directly interacted with each other, are entangled. The quantum correlation degrees of 1.23dB and 1.12dB below the shot noise limit for the amplitude and phase quadratures resulting from the entanglement swapping are straightly measured.Comment: new versio

    Impurity screening and stability of Fermi arcs against Coulomband magnetic scattering in a Weyl monopnictide

    Full text link
    We present a quasiparticle interference study of clean and Mn surface-doped TaAs, a prototypical Weyl semimetal, to test the screening properties as well as the stability of Fermi arcs against Coulomb and magnetic scattering. Contrary to topological insulators, the impurities are effectively screened in Weyl semimetals. The adatoms significantly enhance the strength of the signal such that theoretical predictions on the potential impact of Fermi arcs can be unambiguously scrutinized. Our analysis reveals the existence of three extremely short, previously unknown scattering vectors. Comparison with theory traces them back to scattering events between large parallel segments of spin-split trivial states, strongly limiting their coherence. In sharp contrast to previous work [R. Batabyal et al., Sci. Adv. 2, e1600709 (2016)], where similar but weaker subtle modulations were interpreted as evidence of quasiparticle interference originating from Femi arcs, we can safely exclude this being the case. Overall, our results indicate that intra- as well as inter-Fermi arc scattering are strongly suppressed and may explain why-in spite of their complex multiband structure-transport measurements show signatures of topological states in Weyl monopnictides
    corecore