226 research outputs found

    Tutte polynomial of a small-world farey graph

    Full text link
    In this paper, we find recursive formulas for the Tutte polynomial of a family of small-world networks: Farey graphs, which are modular and have an exponential degree hierarchy. Then, making use of these formulas, we determine the number of spanning trees, as well as the number of connected spanning subgraphs. Furthermore, we also derive exact expressions for the chromatic polynomial and the reliability polynomial of these graphs.Comment: 6 page

    Electric power network fractal and its relationship with power system fault

    Get PDF
    Mreža elektro-energetskog sustava ima karakteristike fraktala. Ima osnovnu značajku složene mreže: sličnost samoj sebi. Autori su najprije izračunali vrijednosti fraktalne dimenzije za nekoliko elektro-energetskih rešetki, uključujući sustav 9 sabirnica WSCC (Western Systems Coordinating Council), sustav 14 sabirnica IEEE, sustav 30 sabirnica IEEE, sustav 39 sabirnica IEEE, sustav 118 sabirnica IEEE i sustav 300 sabirnica IEEE, kao i nekoliko stvarnih energetskih rešetki kao što su 500 kV glavne China Southern Power Grid (CSPG), 500 kV glavne energetske rešetke provincije Guangdong te 500 kV i 220 kV miješane energetske rešetke provincije Guangdong, itd. Na temelju fraktalne vrijednosti energetske rešetke analizirana je usporedba i odnos između fraktalne vrijednosti i intenziteta kvarenja energetskog sustava. Osnovni je zaključak da će za isti nivo napona, što je veća skala, energetska rešetka vjerojatno imati veću fraktalnu vrijednost i veći intenzitet kvarenja. Kod iste skale, što je gušća energetska rešetka to će vjerojatno biti veća fraktalna vrijednost i veći intenzitet kvarenja rešetke. Zaključci pružaju novi uvid u prosudbu statusa osjetljivosti energetskog sustava s interdisciplinarnog gledišta te voditi do novih smjerova u istraživanju.Electric power system network is with fractal characteristic. It has the basic feature of a complex network: self-similarity. The authors first calculated the fractal dimension values for several electric power grids, including WSCC (Western Systems Coordinating Council) 9 bus system, IEEE14 bus system, IEEE 30 bus system, IEEE 39 bus system, IEEE 118 bus system and IEEE 300 bus system; as well as some real power grids such as China Southern Power Grid (CSPG) 500 kV main power grid, Guangdong province 500 kV main power grid, and Guangdong province 500 kV and 220 kV mixed power grid, etc. Based on the power grid fractal value, a comparison and relationship between the fractal value and power system failure rate is analysed. The basic conclusion is that for the same voltage level, the larger the scale is, the larger fractal value and higher failure rate the power grid will possibly have. For the same scale, the denser the power grid, the larger fractal value and higher failure rate the power grid will probably have. The conclusions provide a new vision on the power system vulnerability status judgment from an interdisciplinary view and lead to a new research direction

    Muscle activation patterns and muscle synergies reflect different modes of coordination during upper extremity movement

    Get PDF
    A core issue in motor control is how the central nervous system generates and selects the muscle activation patterns necessary to achieve a variety of behaviors and movements. Extensive studies have verified that it is the foundation to induce a complex movement by the modular combinations of several muscles with a synergetic relationship. However, a few studies focus on the synergetic similarity and dissimilarity among different types of movements, especially for the upper extremity movements. In this study, we introduced the non-negative matrix factorization (NMF) method to explore the muscle activation patterns and synergy structure under 6 types of movements, involving the hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), supination (SU), and pronation (PR). For this, we enrolled 10 healthy subjects to record the electromyography signal for NMF calculation. The results showed a highly modular similarity of the muscle synergy among subjects under the same movement. Furthermore, Spearman’s correlation analysis indicated significant similarities among HO-WE, HO-SU, and WE-SU (p < 0.001). Additionally, we also found shared synergy and special synergy in activation patterns among different movements. This study confirmed the theory of modular structure in the central nervous system, which yields a stable synergetic pattern under the same movement. Our findings on muscle synergy will be of great significance to motor control and even to clinical assessment techniques

    Recent developments in HVDC transmission systems to support renewable energy integration

    Get PDF
    The demands for massive renewable energy integration, passive network power supply, and global energy interconnection have all gradually increased, posing new challenges for high voltage direct current (HVDC) power transmission systems, including more complex topology and increased diversity of bipolar HVDC transmission. This study proposes that these two factors have led to new requirements for HVDC control strategies. Moreover, due to the diverse applications of HVDC transmission technology, each station in the system has different requirements. Furthermore, the topology of the AC-DC converter is being continuously developed, revealing a trend towards hybrid converter stations. Keywords: Direct current transmission system, Topology, Control strategy, AC-DC converte

    Integrated single-cell RNA-seq analysis reveals the vital cell types and dynamic development signature of atherosclerosis

    Get PDF
    Introduction: In the development of atherosclerosis, the remodeling of blood vessels is a key process involving plaque formation and rupture. So far, most reports mainly believe that macrophages, smooth muscle cells, and endothelial cells located at the intima and media of artery play the key role in this process. Few studies had focused on whether fibroblasts located at adventitia are involved in regulating disease process.Methods and results: In this study, we conducted in-depth analysis of single-cell RNA-seq data of the total of 18 samples from healthy and atherosclerotic arteries. This study combines several analysis methods including transcription regulator network, cell-cell communication network, pseudotime trajectory, gene set enrichment analysis, and differential expression analysis. We found that SERPINF1 is highly expressed in fibroblasts and is involved in the regulation of various signaling pathways.Conclusion: Our research reveals a potential mechanism of atherosclerosis, SERPINF1 regulates the formation and rupture of plaques through the Jak-STAT signaling pathway, which may provide new insights into the pathological study of disease. Moreover, we suggest that SRGN and IGKC as potential biomarkers for unstable arterial plaques

    Observation of high-temperature superconductivity in the high-pressure tetragonal phase of La2PrNi2O7-{\delta}

    Full text link
    The recent discovery of high-temperature superconductivity in the Ruddlesden-Popper phase La3Ni2O7 under high pressure marks a significant breakthrough in the field of 3d transition-metal oxide superconductors. For an emerging novel class of high-Tc superconductors, it is crucial to find more analogous superconducting materials with a dedicated effort toward broadening the scope of nickelate superconductors. Here, we report on the observation of high-Tc superconductivity in the high-pressure tetragonal I4/mmm phase of La2PrNi2O7 above ~10 GPa, which is distinct from the reported orthorhombic Fmmm phase of La3Ni2O7 above 14 GPa. For La2PrNi2O7, the onset and the zero-resistance temperatures of superconductivity reach Tconset = 78.2 K and Tczero = 40 K at 15 GPa. This superconducting phase shares the samilar structural symmetry as many cuprate superconductors, providing a fresh platform to investigate underlying mechanisms of nickelate superconductors.Comment: 19 pages and 6 figure

    Multimodal magnetic resonance imaging on brain structure and function changes in vascular cognitive impairment without dementia

    Get PDF
    Vascular cognitive impairment not dementia (VCIND) is one of the three subtypes of vascular cognitive impairment (VCI), with cognitive dysfunction and symptoms ranging between normal cognitive function and vascular dementia. The specific mechanisms underlying VCIND are still not fully understood, and there is a lack of specific diagnostic markers in clinical practice. With the rapid development of magnetic resonance imaging (MRI) technology, structural MRI (sMRI) and functional MRI (fMRI) have become effective methods for exploring the neurobiological mechanisms of VCIND and have made continuous progress. This article provides a comprehensive overview of the research progress in VCIND using multimodal MRI, including sMRI, diffusion tensor imaging, resting-state fMRI, and magnetic resonance spectroscopy. By integrating findings from these multiple modalities, this study presents a novel perspective on the neuropathological mechanisms underlying VCIND. It not only highlights the importance of multimodal MRI in unraveling the complex nature of VCIND but also lays the foundation for future research examining the relationship between brain structure, function, and cognitive impairment in VCIND. These new perspectives and strategies ultimately hold the potential to contribute to the development of more effective diagnostic tools and therapeutic interventions for VCIND

    HBV infection-induced liver cirrhosis development in dual-humanized mice with human bone mesenchymal stem cell transplantation

    Get PDF
    疾病动物模型是现代医学发展的基石,尤其是重大、突发传染病暴发时,适宜的疾病动物模型可为及时发现病原体、制定防控策略提供强大保障,原创的疾病动物模型已成为衡量一个国家生物医药科研水平的标志。我校夏宁邵教授团队和浙江大学附属第一医院李君教授团队历经5年的协同攻关,终于建立了国际上首个高度模拟人类乙肝病毒(HBV)自然感染诱发的慢乙肝肝硬化小鼠模型。厦门大学公共卫生学院袁伦志博士生、浙江大学医学院附属第一医院江静博士和厦门大学公共卫生学院刘旋博士生为该论文共同第一作者。厦门大学夏宁邵教授、浙江大学附属第一医院李君教授和厦门大学程通副教授为该论文共同通讯作者。【Abstract】Objective: Developing a small animal model that accurately delineates the natural history of hepatitis B virus (HBV) infection and immunopathophysiology is necessary to clarify the mechanisms of host-virus interactions and to identify intervention strategies for HBV-related liver diseases. This study aimed to develop an HBV-induced chronic hepatitis and cirrhosis mouse model through transplantation of human bone marrow mesenchymal stem cells (hBMSCs). Design: Transplantation of hBMSCs into Fah -/- Rag2 -/- IL-2Rγc -/- SCID (FRGS) mice with fulminant hepatic failure (FHF) induced by hamster-anti-mouse CD95 antibody JO2 generated a liver and immune cell dual-humanized (hBMSC-FRGS) mouse. The generated hBMSC-FRGS mice were subjected to assessments of sustained viremia, specific immune and inflammatory responses and liver pathophysiological injury to characterize the progression of chronic hepatitis and cirrhosis after HBV infection. Results: The implantation of hBMSCs rescued FHF mice, as demonstrated by robust proliferation and transdifferentiation of functional human hepatocytes and multiple immune cell lineages, including B cells, T cells, NK cells, dendritic cells (DCs) and immune cell lineages, including B cells, T cells, NK cells, dendritic cells (DCs) and viremia and specific immune and inflammatory responses and showed progression to chronic hepatitis and liver cirrhosis at a frequency of 55% after 54 weeks. Conclusion: This new humanized mouse model recapitulates the liver cirrhosis induced by human HBV infection, thus providing research opportunities for understanding viral immune pathophysiology and testing antiviral therapies in vivo.this work was supported by the national Science and technology Major Project (grant nos. 2017ZX10304402, 2017ZX10203201 and 2018ZX09711003-005-003), the national natural Science Foundation of china(grant nos. 81672023, 81571818 and 81771996), the Scientific research Foundation of the State Key laboratory of Molecular Vaccinology and Molecular Diagnostics (grant no 2016ZY005), Zhejiang Province and State's Key Project of the research and Development Plan of china (grant nos 2017c01026 and 2016YFc1101304/3).该研究获得了传染病防治国家科技重大专项、新药创制国家科技重大专项和国家自然科学基金的资助
    corecore