286 research outputs found

    A Review on the Role of Token Frequency in the Acquisition of Argument Structures

    Get PDF
    The role of frequency in second language acquisition has become an important focus among second language acquisition researchers. Argument structure, as one of the core topics of verbs, has always been the focus of academic attention. Frequency has a certain influence on second language construction acquisition, and the corresponding research is abundant. This paper reviews the research on the acquisition of argument structure construction with token frequency and its enlightenment to teaching, and puts forward some suggestions for future research

    Enhanced SPARQL-based design rationale retrieval

    Get PDF
    Design rationale (DR) is an important category within design knowledge, and effective reuse of it depends on its successful retrieval. In this paper, an ontology-based DR retrieval approach is presented, which allows users to search by entering normal queries such as questions in natural language. First, an ontology-based semantic model of DR is developed based on the extended issue-based information system-based DR representation in order to effectively utilize the semantics embedded in DR, and a database of ontology-based DR is constructed, which supports SPARQL queries. Second, two SPARQL query generation methods are proposed. The first method generates initial SPARQL queries from natural language queries automatically using template matching, and the other generates initial SPARQL queries automatically from DR record-based queries. In addition, keyword extension and optimization is conducted to enhance the SPARQL-based retrieval. Third, a design rationale retrieval prototype system is implemented. The experimental results show the advantages of the proposed approach

    Zebrafish foxo3b Negatively Regulates Antiviral Response through Suppressing the Transactivity of irf3 and irf7

    Get PDF
    Forkhead box O (FOXO)3, a member of the FOXO family of transcription factors, plays key roles in various cellular processes, including development, longevity, reproduction, and metabolism. Recently, FOXO3 has also been shown to be involved in modulating the immune response. However, how FOXO3 regulates immunity and the underlying mechanisms are still largely unknown. In this study, we show that zebrafish (Danio rerio) foxo3b, an ortholog of mammalian FOXO3, is induced by polyinosinic-polycytidylic acid stimulation and spring viremia of carp virus (SVCV) infection. We found that foxo3b interacted with irf3 and irf7 to inhibit ifr3/irf7 transcriptional activity, thus resulting in suppression of SVCV or polyinosinic-polycytidylic acid-induced IFN activation. By suppressing expression of key antiviral genes, foxo3b negatively regulated the cellular antiviral response. Furthermore, upon SVCV infection, the expression of the key antiviral genes was significantly enhanced in foxo3b-null zebrafish larvae compared with wild-type larvae. Additionally, the replication of SVCV was inhibited in foxo3b-null zebrafish larvae, leading to a higher survival rate. Our findings suggest that by suppressing irf3/irf7 activity, zebrafish foxo3b negatively regulates the antiviral response, implicating the vital role of the FOXO gene family in innate immunity.</p

    Gas Sensitivity of In0.3Ga0.7As Surface QDs Coupled to Multilayer Buried QDs

    Get PDF
    AbstractA detailed analysis of the electrical response of In0.3Ga0.7As surface quantum dots (SQDs) coupled to 5-layer buried quantum dots (BQDs) is carried out as a function of ethanol and acetone concentration while temperature-dependent photoluminescence (PL) spectra are also analyzed. The coupling structure is grown by solid source molecular beam epitaxy. Carrier transport from BQDs to SQDs is confirmed by the temperature-dependent PL spectra. The importance of the surface states for the sensing application is once more highlighted. The results show that not only the exposure to the target gas but also the illumination affect the electrical response of the coupling sample strongly. In the ethanol atmosphere and under the illumination, the sheet resistance of the coupling structure decays by 50% while it remains nearly constant for the reference structure with only the 5-layer BQDs but not the SQDs. The strong dependence of the electrical response on the gas concentration makes SQDs very suitable for the development of integrated micrometer-sized gas sensor devices

    Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure

    No full text
    We report a continuously tunable resistive switching behavior in Pt/BiFeO₃/Nb-doped SrTiO₃ heterostructure for ferroelectric memristor application. The resistance of this memristor can be tuned up to 5 × 10⁵% by applying voltage pulses at room temperature, which exhibits excellent retention and anti-fatigue characteristics. The observed memristive behavior is attributed to the modulation effect of the ferroelectric polarization reversal on the width of depletion region and the height of potential barrier of the p-n junction formed at the BiFeO₃/Nb-doped SrTiO₃ interface.This work was supported by the National Natural Science Foundation of China (Grant Nos. 11074193 and 51132001). Q.L. and Y.L. acknowledge the support of the Australian Research Council (ARC) in the form of ARC Discovery Grants

    Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil:Drivers from bacterial community structures in rhizosphere

    Get PDF
    Plant growth-promoting rhizobacteria (PGPR) and rhizobia are potentially advantageous in improving plant growth in heavy metal contaminated soils. However, only limited information is available in literature on the manner through which the co-inoculation of PGPR and rhizobia can potentially supply nutrients to benefit plant growth in heavy metal contaminated soil. Accordingly, this study investigated the effects of Paenibacillus mucilaginosus (PGPR) and Sinorhizobium meliloti (rhizobia) co-inoculation on soil nutrients, enzyme activities, and microbial biomass in copper (Cu) contaminated soil planted with alfalfa (Medicago sativa). Moreover, we assessed soil bacterial community structure using high-throughput Illumina sequencing of 16S rRNA genes. Results showed that PGPR and/or rhizobia inoculation improved alfalfa growth. In particular, we found that this co-inoculation approach decreased Cu accumulation (48.6%) in shoots compared to the control (uninoculated). Both partial least squares path modeling (PLS-PM) and the relative importance of regressors in the linear models identified that enzyme activities, microbial biomass, and microbial community structure in Cu contaminated soil were major controlling variables of soil nutrient availability. The co-inoculation treatment significantly increased soil carbon (C) and nitrogen (N) concentrations by increasing urease (55.6%), saccharase (29.5%), and β-glucosidase (31.4%) activities compared to the control. Furthermore, the rhizosphere microbial community structure in the co-inoculation treatment was mainly regulated by soil N concentrations (i.e., both total N and available N) while altering alpha diversity (α-diversity). The relative abundances of Firmicutes (including biomarkers of the Bacillus genus) and Acidobacteria were enriched in the co-inoculated treatment, which can potentially improve soil nutrient availability and subsequently benefit plant growth. These findings indicated that the co-inoculation of PGPR and rhizobia plays an important role in promoting plant growth in Cu contaminated soil. This is because this approach can increase soil nutrient availability by enhancing soil enzyme activities and regulating rhizosphere microbial community structure

    Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria

    Get PDF
    Biodegradable chelant (S,S)-N,N '-ethylenediaminedisuccinic acid (EDDS) has the more advantages of enhanced metal mobility, rapid degradation, environmental friendliness, and ammonium release. However, the risk of metal and/or nitrate residues and leaching within EDDS biodegradation remains as the bottleneck for the widespread application of EDDS-induced phytoremediation. This study aims to explore if the inoculation of plant growth-promoting rhizobacteria (PGPRs) can eliminate the risk associated with the short-term application of EDDS by investigating Cu phytoextraction and soil nitrate content. Results showed that EDDS application significantly increased the copper (Cu) concentration in shoots, soil total Cu, NH4+-N and NO3--N content, but decreased plant biomass. The inoculation of PGPRs in the soil showed a strong ability to increase plant biomass, Cu phytoextraction and soil NH4+-N content, and decrease soil Cu and NO3--N content. Moreover, bacterial dominant taxa were found to be the largest contributors to soil NH4+-N and NO3--N variation, and the abundance of denitrifying bacteria (Bacteroidetes and Stenotrophomonas) decreased in the treatment with PGPRs. The risk of residual Cu and nitrate leaching was reduced by the inoculation of PGPRs without significantly changing the stability of the bacterial community. These new findings indicate that the exogenous application of beneficial rhizobacteria can provide an effective strategy to reduce the risk in metal-contaminated soils of chelant-assisted phytoextraction.</p

    Protective Effects of Chinese Traditional Medicine Buyang Huanwu Decoction on Myocardial Injury

    Get PDF
    Many clinical studies have reported that Buyang Huanwu Decoction (BYHWD) has a protective effect on ischemic heart disease (IHD). In the present study, the protective effect of BYHWD on myocardial ischemia was investigated. Different doses of BYHWD and Compound Danshen Dropping Pills (CDDP) were lavaged to rats, respectively, isoproterenol (ISO) was intraperitoneally injected in to all animals to induce myocardial ischemia except the control group. Electrocardiogram (ECG) of each animal was recorded; activities of lactate dehydrogenase (LDH), creatine kinase (CK) and aspartate aminotransferase (AST) in serum were detected. As the results of ECG showed, pre-treatment with BYHWD inhibited ischemic myocardial injury, and the activities of LDH, CK and AST were lower than those in the myocardial ischemia model group, which suggests that BYHWD rescues the myocardium from ischemia status. To research the potential mechanism, the level of nitric oxide (NO), nitric oxide syntheses (NOS) and inducible nitric oxide syntheses (iNOS), the expression of iNOS and ligand of cluster of differentiation 40 (CD40L) were detected. The results revealed that BYHWD significantly decreased the level of NO, NOS and iNOS in serum. Moreover, BYHWD decreased the expression of iNOS and CD40L in myocardial tissues. These results indicate that the protective effect of BYHWD on myocardial ischemia and mechanism are associated with inhibition of iNOS and CD40L expression
    corecore