882 research outputs found

    Search and Result Presentation in Scientific Workflow Repositories

    Get PDF
    We study the problem of searching a repository of complex hierarchical workflows whose component modules, both composite and atomic, have been annotated with keywords. Since keyword search does not use the graph structure of a workflow, we develop a model of workflows using context-free bag grammars. We then give efficient polynomial-time algorithms that, given a workflow and a keyword query, determine whether some execution of the workflow matches the query. Based on these algorithms we develop a search and ranking solution that efficiently retrieves the top-k grammars from a repository. Finally, we propose a novel result presentation method for grammars matching a keyword query, based on representative parse-trees. The effectiveness of our approach is validated through an extensive experimental evaluation

    Answering Regular Path Queries on Workflow Provenance

    Full text link
    This paper proposes a novel approach for efficiently evaluating regular path queries over provenance graphs of workflows that may include recursion. The approach assumes that an execution g of a workflow G is labeled with query-agnostic reachability labels using an existing technique. At query time, given g, G and a regular path query R, the approach decomposes R into a set of subqueries R1, ..., Rk that are safe for G. For each safe subquery Ri, G is rewritten so that, using the reachability labels of nodes in g, whether or not there is a path which matches Ri between two nodes can be decided in constant time. The results of each safe subquery are then composed, possibly with some small unsafe remainder, to produce an answer to R. The approach results in an algorithm that significantly reduces the number of subqueries k over existing techniques by increasing their size and complexity, and that evaluates each subquery in time bounded by its input and output size. Experimental results demonstrate the benefit of this approach

    AKEM: Aligning Knowledge Base to Queries with Ensemble Model for Entity Recognition and Linking

    Full text link
    This paper presents a novel approach to address the Entity Recognition and Linking Challenge at NLPCC 2015. The task involves extracting named entity mentions from short search queries and linking them to entities within a reference Chinese knowledge base. To tackle this problem, we first expand the existing knowledge base and utilize external knowledge to identify candidate entities, thereby improving the recall rate. Next, we extract features from the candidate entities and utilize Support Vector Regression and Multiple Additive Regression Tree as scoring functions to filter the results. Additionally, we apply rules to further refine the results and enhance precision. Our method is computationally efficient and achieves an F1 score of 0.535

    Search and Result Presentation in Scientific Workflow Repositories

    Get PDF
    We study the problem of searching a repository of complex hierarchical workflows whose component modules, both composite and atomic, have been annotated with keywords. Since keyword search does not use the graph structure of a workflow, we develop a model of workflows using context-free bag grammars. We then give efficient polynomial-time algorithms that, given a workflow and a keyword query, determine whether some execution of the workflow matches the query. Based on these algorithms we develop a search and ranking solution that efficiently retrieves the top-k grammars from a repository. Finally, we propose a novel result presentation method for grammars matching a keyword query, based on representative parse-trees. The effectiveness of ou

    Neural differentiation of adipose-derived stem cells by indirect co-culture with Schwann cells

    Get PDF
    To investigate whether adipose-derived stem cells (ADSCs) could be subject to neural differentiation induced only by Schwann cell (SC) factors, we co-cultured ADSCs and SCs in transwell culture dishes. Immunoassaying, Western blot analysis, and RT-PCR were performed (1, 3, 7, 14 d) and the co-cultured ADSCs showed gene and protein expression of S-100, Nestin, and GFAP. Further, qRT-PCR disclosed relative quantitative differences in the above three gene expressions. We think ADSCs can undergo induced neural differentiation by being co-cultured with SCs, and such differentia­tions begin 1 day after co-culture, become apparent after 7 days, and thereafter remain stable till the 14th day

    Multi-Task Learning in Conditional Random Fields for Chunking in Shallow Semantic Parsing

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200
    corecore