117 research outputs found

    hiPSC-Based Tissue Organoid Regeneration

    Get PDF
    Induced pluripotent stem cells (iPSCs) are generated from terminally differentiated cells and have the potential to differentiate to any organs originated from the embryonic germ layers. Extensive effort has been made to establish protocols for direct in vitro conversion of human iPSCs (hiPSCs) to different cell types/organs. Importantly, hiPSCs can be generated from patients with known genetic mutations that predispose to high-risks of specific disease development. Thus, the hiPSCs technology provides unlimited resources for creating patient-specific disease models. hiPSC-derived three-dimensional “organoid” models have recently emerged as a powerful tool to recapitulate the physiologically-relevant process of disease progression in vitro. In this chapter, we will discuss the current advancement of organoid regeneration from hiPSCs and the applications of hiPSCs-derived organoids. The limitations and challenges of this approach will also be discussed here

    Single Protein Encapsulated Doxorubicin as an Efficacious Anticancer Therapeutic

    Get PDF
    Small‐molecule chemotherapeutics are potent and effective against a variety of malignancies, but common and severe side effects restrict their clinical applications. Nanomedicine approaches represent a major focus for improving chemotherapy, but have met limited success. To overcome the limitations of chemotherapy drugs, a novel single protein encapsulation (SPE)‐based drug formulation and delivery platform is developed and its utility in improving doxorubicin (DOX) treatment is tested. Using this methodology, a series of SPEDOX complexes are generated by encapsulating various numbers of DOX molecules into a single human serum albumin (HSA) molecule. UV/fluorescence spectroscopy, membrane dialysis, and dynamic light scattering techniques show that SPEDOXs are stable and uniform as monomeric HSA and display unique properties distinct from those of DOX and DOX‐HSA mixture. Furthermore, detailed procedures to precisely monitor and control both DOX payload and binding strength to HSA are established. Breast cancer xenograft tumor studies reveal that SPEDOX‐6 treatment displays improved pharmacokinetic profiles, higher antitumor efficacy, and lower DOX accumulation in the heart tissue compared with unformulated DOX. This SPE technology, which does not involve nanoparticle assembly and modifications to either small‐molecule drugs or HSA, may open up a new avenue for developing new drug delivery systems to improve anticancer therapeutics

    Translational Challenges and Therapeutic Opportunities in BRCA1-Related Breast Cancer

    Get PDF
    Although significant progress has been made in the management of the hereditary cancer syndrome related to mutations of BRCA1, two fundamental and clinically relevant questions regarding BRCA1-related cancer syndrome remain unresolved: (1) What factors account for the tissue specificity of the BRCA1-related cancer risk? (2) How does a mutation or loss of BRCA1 lead to the basal-like phenotype of breast cancer? This review focuses on recent studies in BRCA1-related pathways that lead to specific characteristics of the hereditary cancer syndrome and discusses the current translational evidence for exploiting these pathways in new therapeutic strategies. Mounting evidence suggests that estrogen signaling and metabolism, oxidative stress, specific secondary mutations, and regulation of specific progenitor cells and transcriptional programs are critical in BRCA1-associated breast cancer. Strategies geared toward estrogen reduction may play a role in treatment and prevention. Therapies aimed at mitigating oxidative stress may be a strategy for risk reduction, while cancer-cell-specific sensitivity to oxidative stress may also be an opportunity for specific targeting. BRCA1-related transcriptional regulation and signaling provide a number of therapeutic targets, including the PI3-AKT and Notch pathways. Thus, significant opportunities exist in translational and clinical research for developing the treatment strategies for the management of BRCA1-related breast cancer

    Lack of interaction between ErbB2 and insulin receptor substrate signaling in breast cancer

    Get PDF
    Background: ErbB2 Receptor Tyrosine Kinase 2 (ErbB2, HER2/Neu) is amplified in breast cancer and associated with poor prognosis. Growing evidence suggests interplay between ErbB2 and insulin-like growth factor (IGF) signaling. For example, ErbB2 inhibitors can block IGF-induced signaling while, conversely, IGF1R inhibitors can inhibit ErbB2 action. ErbB receptors can bind and phosphorylate insulin receptor substrates (IRS) and this may be critical for ErbBmediated anti-estrogen resistance in breast cancer. Herein, we examined crosstalk between ErbB2 and IRSs using cancer cell lines and transgenic mouse models. Methods: MMTV-ErbB2 and MMTV-IRS2 transgenic mice were crossed to create hemizygous MMTV-ErbB2/MMTVIRS2 bigenic mice. Signaling crosstalk between ErbB2 and IRSs was examined in vitro by knockdown or overexpression followed by western blot analysis for downstream signaling intermediates and growth assays. Results: A cross between MMTV-ErbB2 and MMTV-IRS2 mice demonstrated no enhancement of ErbB2 mediated mammary tumorigenesis or metastasis by elevated IRS2. Substantiating this, overexpression or knockdown of IRS1 or IRS2 in MMTV-ErbB2 mammary cancer cell lines had little effect upon ErbB2 signaling. Similar results were obtained in human mammary epithelial cells (MCF10A) and breast cancer cell lines. Conclusion: Despite previous evidence suggesting that ErbB receptors can bind and activate IRSs, our findings indicate that ErbB2 does not cooperate with the IRS pathway in these models to promote mammary tumorigenesis

    Cell-Cycle-Regulated Interaction between Mcm10 and Double Hexameric Mcm2-7 Is Required for Helicase Splitting and Activation during S Phase

    Get PDF
    Mcm2-7 helicase is loaded onto double-stranded origin DNA as an inactive double hexamer (DH) in G1 phase. The mechanisms of Mcm2-7 remodeling that trigger helicase activation in S phase remain unknown. Here, we develop an approach to detect and purify the endogenous DHs directly. Through cellular fractionation, we provide in vivo evidence that DHs are assembled on chromatin in G1 phase and separated during S phase. Interestingly, Mcm10, a robust MCM interactor, co-purifies exclusively with the DHs in the context of chromatin. Deletion of the main interaction domain, Mcm10 C terminus, causes growth and S phase defects, which can be suppressed through Mcm10-MCM fusions. By monitoring the dynamics of MCM DHs, we show a significant delay in DH dissolution during S phase in the Mcm10-MCM interaction-deficient mutants. Therefore, we propose an essential role for Mcm10 in Mcm2-7 remodeling through formation of a cell-cycle-regulated supercomplex with DHs

    Redox Regulation in Cancer Stem Cells

    Get PDF
    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment

    Resistance to receptor-blocking therapies primes tumors as targets for HER3-homing nanobiologics

    Get PDF
    Resistance to anti-tumor therapeutics is an important clinical problem. Tumor-targeted therapies currently used in the clinic are derived from antibodies or small molecules that mitigate growth factor activity. These have improved therapeutic efficacy and safety compared to traditional treatment modalities but resistance arises in the majority of clinical cases. Targeting such resistance could improve tumor abatement and patient survival. A growing number of such tumors are characterized by prominent expression of the human epidermal growth factor receptor 3 (HER3) on the cell surface. This study presents a “Trojan-Horse” approach to combating these tumors by using a receptor-targeted biocarrier that exploits the HER3 cell surface protein as a portal to sneak therapeutics into tumor cells by mimicking an essential ligand. The biocarrier used here combines several functions within a single fusion protein for mediating targeted cell penetration and non-covalent self-assembly with therapeutic cargo, forming HER3-homing nanobiologics. Importantly, we demonstrate here that these nanobiologics are therapeutically effective in several scenarios of resistance to clinically approved targeted inhibitors of the human EGF receptor family. We also show that such inhibitors heighten efficacy of our nanobiologics on naïve tumors by augmenting HER3 expression. This approach takes advantage of a current clinical problem (i.e. resistance to growth factor inhibition) and uses it to make tumors more susceptible to HER3 nanobiologic treatment. Moreover, we demonstrate a novel approach in addressing drug resistance by taking inhibitors against which resistance arises and re-introducing these as adjuvants, sensitizing tumors to the HER3 nanobiologics described here

    Expression of Autotaxin and Lysophosphatidic Acid Receptors Increases Mammary Tumorigenesis, Invasion, and Metastases

    Get PDF
    Lysophosphatidic acid (LPA) acts through high affinity G protein-coupled receptors to mediate a plethora of physiological and pathological activities associated with tumorigenesis. LPA receptors and autotaxin (ATX/LysoPLD), the primary enzyme producing LPA, are aberrantly expressed in multiple cancer lineages. However, the role of ATX and LPA receptors in the initiation and progression of breast cancer has not been evaluated. We demonstrate that expression of ATX or each Edg-family LPA receptor in mammary epithelium of transgenic mice is sufficient to induce a high frequency of late-onset, estrogen receptor (ER) positive, invasive and metastatic mammary cancer. Thus ATX and LPA receptors can contribute to the initiation and progression of breast cancer

    Expression of Autotaxin and Lysophosphatidic Acid Receptors Increases Mammary Tumorigenesis, Invasion, and Metastases

    Get PDF
    Lysophosphatidic acid (LPA) acts through high affinity G protein-coupled receptors to mediate a plethora of physiological and pathological activities associated with tumorigenesis. LPA receptors and autotaxin (ATX/LysoPLD), the primary enzyme producing LPA, are aberrantly expressed in multiple cancer lineages. However, the role of ATX and LPA receptors in the initiation and progression of breast cancer has not been evaluated. We demonstrate that expression of ATX or each Edg-family LPA receptor in mammary epithelium of transgenic mice is sufficient to induce a high frequency of late-onset, estrogen receptor (ER) positive, invasive and metastatic mammary cancer. Thus ATX and LPA receptors can contribute to the initiation and progression of breast cancer
    corecore