103 research outputs found

    Cytotoxicity Study of Cyclopentapeptide Analogues of Marine Natural Product Galaxamide towards Human Breast Cancer Cells

    Get PDF
    Herein, we report the cytotoxicity of cyclopentapeptide analogues of marine natural product galaxamide towards breast carcinoma cells and the underlying mechanisms. We examined the effect of the novel galaxamide analogues on cancer cell proliferation by MTT assay and also further examined the most active compound for morphological changes using Hoechst33342 staining technique, induction of apoptosis, cell cycle phases, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) generation using flow cytometry in human breast cancer MCF-7 cells in vitro. Galaxamide and its analogues effectively induced toxicity in human hepatocellular carcinoma HepG2, human breast carcinoma MCF-7, human epitheloid cervix carcinoma HeLa, and human breast carcinoma MB-MDA-231 cell lines. Amongst them, compound 3 exhibited excellent toxicity towards MCF-7 cells. This galaxamide analogue significantly induced apoptosis in a dose-dependent manner in MCF-7 cells involves cell cycle arrest in the G1 phase, a reduction of MMP, and a marked increase in generation of ROS. Particularly, compound 3 of galaxamide analogues might be a potential candidate for the treatment of breast cancer

    SARS-CoV-2 Host Receptor ACE2 Protein Expression Atlas in Human Gastrointestinal Tract

    Get PDF
    BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells through interactions with its receptor, Angiotensin-converting enzyme 2 (ACE2), causing severe acute respiratory syndrome and death in a considerable proportion of people. Patients infected with SARS-CoV-2 experience digestive symptoms. However, the precise protein expression atlas of ACE2 in the gastrointestinal tract remains unclear. In this study, we aimed to explore the ACE2 protein expression pattern and the underlying function of ACE2 in the gastrointestinal tract, including the colon, stomach, liver, and pancreas.MethodsWe measured the protein expression of ACE2 in the gastrointestinal tract using immunohistochemical (IHC) staining with an ACE2-specific antibody of paraffin-embedded colon, stomach, liver, and pancreatic tissues. The correlation between the protein expression of ACE2 and the prognosis of patients with gastrointestinal cancers was analyzed by the log-rank (Mantel–Cox) test. The influence of ACE2 on colon, stomach, liver, and pancreatic tumor cell line proliferation was tested using a Cell Counting Kit 8 (CCK-8) assay.ResultsACE2 presented heterogeneous expression patterns in the gastrointestinal tract, and it showed a punctate distribution in hepatic cells. Compared to that in parallel adjacent non-tumor tissues, the protein expression of ACE2 was significantly increased in colon cancer, stomach cancer, and pancreatic cancer tissues but dramatically decreased in liver cancer tissues. However, the expression level of the ACE2 protein was not correlated with the survival of patients with gastrointestinal cancers. Consistently, ACE2 did not affect the proliferation of gastrointestinal cancer cells in vitro.ConclusionThe ACE2 protein is widely expressed in the gastrointestinal tract, and its expression is significantly altered in gastrointestinal tumor tissues. ACE2 is not an independent prognostic marker of gastrointestinal cancers

    Metabolism and Pharmacokinetics of Novel Selective Vascular Endothelial Growth Factor Receptor-2 Inhibitor Apatinib in Humans

    Get PDF
    ABSTRACT Apatinib is a new oral antiangiogenic molecule that inhibits vascular endothelial growth factor receptor-2. The present study aimed to determine the metabolism, pharmacokinetics, and excretion of apatinib in humans and to identify the enzymes responsible for its metabolism. The primary routes of apatinib biotransformation included E-and Z-cyclopentyl-3-hydroxylation, N-dealkylation, pyridyl-25-N-oxidation, 16-hydroxylation, dioxygenation, and O-glucuronidation after 3-hydroxylation. Nine major metabolites were confirmed by comparison with reference standards. The total recovery of the administered dose was 76.8% within 96 hours postdose, with 69.8 and 7.02% of the administered dose excreted in feces and urine, respectively. About 59.0% of the administered dose was excreted unchanged via feces. Unchanged apatinib was detected in negligible quantities in urine, indicating that systemically available apatinib was extensively metabolized. The major circulating metabolite was the pharmacologically inactive E-3-hydroxy-apatinib-O-glucuronide (M9-2), the steady-state exposure of which was 125% that of the apatinib. The steady-state exposures of E-3-hydroxy-apatinib (M1-1), Z-3-hydroxy-apatinib (M1-2), and apatinib-25-N-oxide (M1-6) were 56, 22, and 32% of parent drug exposure, respectively. Calculated as pharmacological activity index values, the contribution of M1-1 to the pharmacology of the drug was 5.42 to 19.3% that of the parent drug. The contribution of M1-2 and M1-6 to the pharmacology of the drug was less than 1%. Therefore, apatinib was a major contributor to the overall pharmacological activity in humans. Apatinib was metabolized primarily by CYP3A4/ 5 and, to a lesser extent, by CYP2D6, CYP2C9, and CYP2E1. UGT2B7 was the main enzyme responsible for M9-2 formation. Both UGT1A4 and UGT2B7 were responsible for Z-3-hydroxyapatinib-O-glucuronide (M9-1) formation

    The NF-kappa B inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gambogic acid (GA) is a major active ingredient of gamboge, a widely used traditional Chinese medicine that has been reported to be a potent cytotoxic agent against some malignant tumors. Many studies have shown that the NF-kappa B signaling pathway plays an important role in anti-apoptosis and the drug resistance of tumor cells during chemotherapy. In this study, the effects and mechanisms of GA and the NF-kappa B inhibitor celastrol on oral cancer cells were investigated.</p> <p>Methods</p> <p>Three human oral squamous cell carcinoma cell lines, Tca8113, TSCC and NT, were treated with GA alone, celastrol alone or GA plus celastrol. Cytotoxicity was assessed by MTT assay. The rate of apoptosis was examined with annexin V/PI staining as well as transmission electronic microscopy in Tca8113 cells. The level of constitutive NF-kappa B activity in oral squamous cell carcinoma cell lines was determined by immunofluorescence assays and nuclear extracts and electrophoretic mobility shift assays (EMSAs) <it>in vitro</it>. To further investigate the role of NF-kappa B activity in GA and celastrol treatment in oral squamous cell carcinoma, we used the dominant negative mutant SR-IκBα to inhibit NF-kappa B activity and to observe its influence on the effect of GA.</p> <p>Results</p> <p>The results showed that GA could inhibit the proliferation and induce the apoptosis of the oral squamous cell carcinoma cell lines and that the NF-kappa B pathway was simultaneously activated by GA treatment. The minimal cytotoxic dose of celastrol was able to effectively suppress the GA-induced NF-kappa B pathway activation. Following the combined treatment with GA and the minimal cytotoxic dose of celastrol or the dominant negative mutant SR-IκBα, proliferation was significantly inhibited, and the apoptotic rate of Tca8113 cells was significantly increased.</p> <p>Conclusion</p> <p>The combination of GA and celastrol has a synergistic antitumor effect. The effect can be primarily attributed to apoptosis induced by a decrease in NF-kappa B pathway activation. The NF-kappa B signaling pathway plays an important role in this process. Therefore, combining GA and celastrol may be a promising modality for treating oral squamous cell carcinoma.</p

    A Case of Severe COVID-19 in a Patient with Acute Graft-versus-Host Disease after Haploidentical Transplantation

    No full text
    We report a case of coronavirus disease 2019 (COVID-19) after haploidentical transplantation with acute graft-versus-host disease (aGVHD). COVID-19 and aGVHD were improved under treatment with arbidol, remdesivir, methylprednisolone, and ruxolitinib. However, eventually, the patient died of septic shock and multiple organ failure. It was concluded that the disease condition of this COVID-19 patient after transplantation was serious, complex, and variable, with poor prognosis

    Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves

    No full text
    Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field
    corecore