181 research outputs found

    Measuring Hydrometeors with a Precipitation Microphysical Characteristics Sensor: Calibration and Field Measurements

    Get PDF
    Aiming at the simultaneous measurement of the size, shape, and fall velocity of precipitation particles in the natural environment, we present here a new ground-based precipitation microphysical characteristics sensor (PMCS) based on the particle imaging velocimetry technology. The PMCS can capture autocorrelated images of precipitation particles by double-exposure in one frame, by which the size, axis ratio, and fall velocity of precipitation particles can be calculated. The PMCS is calibrated by a series of glass balls with certain diameters under varying light conditions, and a self-adaptive threshold method is proposed. The shape, axis ratio, and fall velocity of raindrops were calculated and discussed based on the field measurement results of PMCS. The typical shape of large raindrop is an oblate ellipsoid, the axis ratio of raindrops decreases linearly with the diameter, the fall velocity of raindrops approaches its asymptote, and the above observed results are in good agreement with the empirical models; the synchronous observation of a PMCS, an OTT PARSIVEL disdrometer, and a rain gauge shows that the PMCS is able to measure the rain intensity, accumulated rainfall, and drop size distribution with high accuracy. These results have validated the performance of PMCS

    A Strategy Optimization Approach for Mission Deployment in Distributed Systems

    Get PDF
    In order to increase operational efficiency, reduce delays, and/or maximize profit, almost all the organizations have split their mission into several tasks which are deployed in distributed system. However, due to distributivity, the mission is prone to be vulnerable to kinds of cyberattacks. In this paper, we propose a mission deployment scheme to optimize mission payoff in the face of different attack strategies. Using this scheme, defenders can achieve “appropriate security” and force attackers to jointly safeguard the mission situation

    Use of Saturated Lightweight Sand to Improve the Mechanical and Microstructural Properties of UHPC with Fiber Alignment

    Get PDF
    This paper studied the influence of pre-saturated lightweight sand (LWS) on the mechanical and microstructural properties of UHPC cast with steel fiber alignment. The changes in hydration kinetics, porosity, nano-mechanical, and mechanical properties were studied. The LWS was used at 0–50% replacement volumes of total sand. Predominant fiber alignment was favored through a flow-induced casting method during casting of flexural prisms. Experiment results showed that the 28-d autogenous shrinkage was decreased from 450 to 275 μm/m with the LWS content increasing from 0 to 50%. The addition of 20% LWS led to maximum increases of 15%, 15%, and 20% in compressive strength, flexural strength, and T150, respectively, relative to UHPC made without any LWS. The use of 20% LWS combined with fiber alignment led to a synergistic effect of 45% and 40% on enhancing the flexural strength and T150, respectively, relative to UHPC without LWS and having random fiber orientation. The addition of LWS can enhance the cement hydration given the internal curing effect. Such enhanced cement hydration increased the percentage of high density and ultra-high density C–S–H from 50% to 75% and reduced the 28-d porosity from 12.5% to 9.5% with the use of 20% LWS. On the other hand, such internal curing can be overwhelmed by the introduced pores of LWS when excessive LWS was used, which led to significant increase in porosity of UHPC

    For the Improvement of Mechanical and Microstructural Properties of UHPC with Fiber Alignment using Carbon Nanotube and Graphite Nanoplatelet

    Get PDF
    This paper investigates the influence of carbon nanotube (CNT) and graphite nanoplatelet (GNP) on the microstructure and mechanical characteristics of UHPC with steel fiber alignment. The content of CNT and GNP ranged from 0 to 0.3%, by mass of binder. Predominant fiber alignment was manipulated using a flow-induced casting method during UHPC placement. Experiment results indicated that the increase of CNT and GNP content from 0 to 0.3% led to 15%, 40%, and 50% improvement in compressive strength, flexural strength, and T150 (dissipated energy) of UHPC, respectively. Fiber alignment was shown to increase flexural strength and T150 by 30% and 35%, respectively, compared to UHPC with random finer orientation. Moreover, the synergy of nanomaterial and fiber alignment can lead to a maximum enhancement of 80% and 90% in flexural strength and T150, respectively. Microstructural analysis indicated that CNT and GNP can enhance cement hydration and enable the bridging of cracks at nano or microscale. Moreover, the use of CNT and GNP reduced the porosities of fiber-matrix interface from 6%-12.5% to 4%–7% and UHPC matrix from 5.5% to 4%. This consequently contributed to the significant improvement in mechanical properties of UHPC

    Unsupervised Visible-Infrared Person ReID by Collaborative Learning with Neighbor-Guided Label Refinement

    Full text link
    Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims at learning modality-invariant features from unlabeled cross-modality dataset, which is crucial for practical applications in video surveillance systems. The key to essentially address the USL-VI-ReID task is to solve the cross-modality data association problem for further heterogeneous joint learning. To address this issue, we propose a Dual Optimal Transport Label Assignment (DOTLA) framework to simultaneously assign the generated labels from one modality to its counterpart modality. The proposed DOTLA mechanism formulates a mutual reinforcement and efficient solution to cross-modality data association, which could effectively reduce the side-effects of some insufficient and noisy label associations. Besides, we further propose a cross-modality neighbor consistency guided label refinement and regularization module, to eliminate the negative effects brought by the inaccurate supervised signals, under the assumption that the prediction or label distribution of each example should be similar to its nearest neighbors. Extensive experimental results on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method, surpassing existing state-of-the-art approach by a large margin of 7.76% mAP on average, which even surpasses some supervised VI-ReID methods

    Numerical investigation of harbor oscillations induced by focused transient wave groups

    Get PDF
    Focused wave groups are traveling waves characterized by extremely-large transient wave amplitudes and very short durations. These waves usually cause serious damage to marine/offshore structures and coastal infrastructures, and can even result in human casualties (Nikolkina and Didenkulova, 2011). The studies on natural disasters related to the focused wave groups near the coastal zone have been mostly confined to wave evolution over beaches, wave runup, overtopping, and their impact forces acting on the coastal infrastructures (e.g., the seawall and the circular cylinder); the influence of focused transient wave groups on harbors has not yet been studied. In this study, the generation and propagation of focused transient wave groups and their interactions with the harbor are simulated using a fully nonlinear Boussinesq model, FUNWAVE 2.0. To this end, four elongated harbors with constant depth and a series of focused wave groups with various focused wave amplitudes, spectral width parameters, and incident directions are considered. Based on the Morlet wavelet transform and discrete Fourier transform techniques, the capability of focused transient wave groups to trigger the harbor resonance phenomenon is revealed for the first time. Subsequently, the influences of spectral width parameter, incident wave direction, and resonant mode on different resonant wave parameters (including maximum runup and resonant intensity of various resonant modes inside a harbor) are comprehensively investigated, and it is found that these three factors have significant effects on resonant wave parameters.</p

    Identification and Comparison of Chemosensory Genes in the Antennal Transcriptomes of Eucryptorrhynchus scrobiculatus and E. brandti Fed on Ailanthus altissima

    Get PDF
    The key to the coexistence of two or more species on the same host is ecological niche separation. Adult Eucryptorrhynchus scrobiculatus and E. brandti both feed on the tree of heaven, Ailanthus altissima, but on different sections of the plant. Olfaction plays a vital role in foraging for food resources. Chemosensory genes on the antennae, the main organ for insect olfaction, might explain their feeding differentiation. In the present study, we identified 130 and 129 putative chemosensory genes in E. scrobiculatus and E. brandti, respectively, by antennal transcriptome sequencing, including 31 odorant-binding proteins (OBPs), 11 chemosensory proteins (CSPs), 49 odorant receptors (ORs), 17 ionotropic receptors (IRs), 19 gustatory receptors (GRs), and three sensory neuron membrane proteins (SNMPs) in E. scrobiculatus and 28 OBPs, 11 CSPs, 45 ORs, 25 IRs, 17 GRs, and three SNMPs in E. brandti. We inferred that EscrOBP8 (EscrPBP1), EscrOBP24 (EscrPBP2) and EbraOBP8 (EbraPBP1), EbraOBP24 (EbraPBP2) were putative PBPs by the phylogenetic analysis. We identified species-specific OR transcripts (10 EscrORs and 8 EbraORs) with potential roles in the recognition of specific volatiles of A. altissima. In addition to conserved “antennal IRs,” we also found several “divergent IRs” orthologues in E. scrobiculatus and E. brandti, such as EscrIR16, EbraIR19, and EbraIR20. Compared with other chemosensory genes, GRs between E. scrobiculatus and E. brandti shared lower amino acid identities, which could explain the different feeding habits of the species. We examined OBP expression patterns in various tissues and sexes. Although amino acid sequence similarities were high between EscrOBPs and EbraOBPs, the homologous OBPs showed different tissue expression pattern between two weevils. Our systematic comparison of chemosensory genes in E. scrobiculatus and E. brandti provides a foundation for studies of olfaction and olfactory differentiation in the two weevils as well as a theoretical basis for studying species differentiation

    Observation of Dissipative Bright Soliton and Dark Soliton in an All-Normal Dispersion Fiber Laser

    Get PDF
    This paper proposes a novel way for controlling the generation of the dissipative bright soliton and dark soliton operation of lasers. We observe the generation of dissipative bright and dark soliton in an all-normal dispersion fiber laser by employing the nonlinear polarization rotation (NPR) technique. Through adjusting the angle of the polarizer and analyzer, the mode-locked and non-mode-locked regions can be obtained in different polarization directions. Numerical simulation shows that, in an appropriate pump power range, the dissipative bright soliton and dark soliton can be generated simultaneously in the mode-locked and non-mode-locked regions, respectively. If the pump power exceeds the top limit of this range, only dissipative soliton will exist, whereas if it is below the lower bound of this range, only dark soliton will exist
    • …
    corecore