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This paper proposes a novel way for controlling the generation of the dissipative bright soliton and dark soliton operation of lasers.
We observe the generation of dissipative bright and dark soliton in an all-normal dispersion fiber laser by employing the nonlinear
polarization rotation (NPR) technique.Through adjusting the angle of the polarizer and analyzer, themode-locked and non-mode-
locked regions can be obtained in different polarization directions. Numerical simulation shows that, in an appropriate pump power
range, the dissipative bright soliton and dark soliton can be generated simultaneously in the mode-locked and non-mode-locked
regions, respectively. If the pump power exceeds the top limit of this range, only dissipative soliton will exist, whereas if it is below
the lower bound of this range, only dark soliton will exist.

1. Introduction

With the rapid development of ultrafast optical field, a great
many researchers have been focusing on mode-locked fiber
laser recently [1–7]. Passive mode-locked fiber lasers have
shown many advantages over solid-state systems such as the
compact design, low-cost, and stability [8–11]. It has also
some potential applications, like laser processing, optical
communications, medical equipment, military, and so on
[12–14]. Ultrashort pulses are stabilized in an oscillator
when the effects of optical nonlinearity are exactly balanced
by other processes after one cycle around the cavity. The
most widely used method to compensate nonlinearity is
group velocity dispersion (GVD). The traditional soliton is
formed by the balance between nonlinear and negative
dispersion phase changes. The resulting soliton propagates
indefinitely without change. However, the traditional soliton
is limited to 0.1 nJ of the energy in standard fibers [15]. When
the GVD reaches zero, the dispersion managed soliton has
been formed,which enables emitting the pulseswith the pulse
energy reaching the 1 nJ level [16]. Instead of conventional
soliton and dispersion managed soliton, self-similar soliton
can tolerate strong nonlinearity without wave breaking. But
due to the restricted gain bandwidth, self-similar soliton

allows the energy to reach the 10 nJ level [17]. Dissipative
soliton (DS) has attracted great interest in the development
of fiber lasers because it can significantly improve the deliv-
erable energy of pulse, approaching or even exceeding 100 nJ
[18, 19], and the DS exists in nonconservative systems whose
dynamics are extremely different from those of conventional
soliton [20–22]. A fiber laser with pure normal GVD (or large
normal GVD together with small anomalous GVD) would
presumably have to exploit dissipative process in the mode-
locked pulse shaping [23–25].

The research of dark soliton lags behind that of bright
soliton due to the difficulty of dark soliton generation. How-
ever, dark soliton is more suitable than bright soliton when
used in optical communications [26]. Dark soliton is broad-
ened during propagation at nearly half the rate of bright
soliton, and dark soliton shows more resistance than bright
soliton to perturbation during propagation. Furthermore, as
the background noise mainly affects the background of the
dark soliton, it is less sensitive to background noise [27–
29]. Recently, the dark soliton formation in fiber lasers has
been reported in literature [30–33]. Zhang et al. have exper-
imentally observed dark soliton in a fiber ring laser with
all-anomalous dispersion fibers [30] and with all-normal
dispersion fibers [31]. Tang et al. demonstrated the dark
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soliton formation in an all-normal dispersion cavity fiber
laser without an antisaturable absorber in cavity [33].

In this paper, we propose a novel way for controlling the
generation of the dissipative bright soliton and dark soliton
operation of lasers. The nonlinear polarization rotation tech-
nique is implemented for generating mode-locked and non-
mode-locked region. The dissipative soliton and dark soliton
are obtained in mode-locked and non-mode-locked regions,
respectively.

2. Modeling

To study the feature and dynamic evolution of dissipative and
dark soliton in an all-normal dispersion fiber laser, we imple-
ment a numerical model that incorporates the most impor-
tant physical effects like the nonlinear polarization rotation
(NPR), spectral filtering (SF), and so forth. The propagation
model is shown schematically in Figure 1. It consists of a 4m
erbium-doped fiber (EDF) and 1.8m dispersion compensat-
ing fiber (DCF), and the polarization additive-pulse mode-
locking (PAPM) system is made of a polarization-sensitive
isolator and two sets of polarization controllers, two quarter
waveplates (QWP), and a half waveplate (HWP) made of
the polarizer; one QWP and a HWP constitute the analyzer.
The PAPM system is used to produce the NPR effect, which
relies on the intensity dependent rotation of an elliptical
polarization state in a length of optical fiber. By setting the
angle of the polarizer and the linear cavity phase delay of
the cavity appropriately, we can obtain the mode-locked and
the non-mode-locked area in PAPM where mode-locked
area means that the light intensity is inversely proportional
to the loss and the opposite non-mode-locked area. When
the soliton propagates through the PAPM element and the
intensity transmission, 𝑇 is expressed as [11]

𝑇 = sin2 (𝜃) sin2 (𝜑) + cos2 (𝜃) cos2 (𝜑)
+ 0.5 sin (2𝜃) sin (2𝜑) cos (Δ𝜙𝐿 + Δ𝜙𝑁𝐿) ,

(1)

where 𝜃 and 𝜑 represent the angle between the fast axis of the
birefringent fiber and polarizer (analyzer), Δ𝜙𝐿 is the linear
cavity phase delay, Δ𝜙𝐿 = (2𝜋𝐿/𝜆)(𝑛𝑥 − 𝑛𝑦) + 𝜙𝑃𝐶, 𝜙𝑃𝐶 is the
phase difference between two polarization directions, and 𝜆
and 𝐿 represent the cavity length of the fiber and the wave-
length of light, respectively.Δ𝜙𝑁𝐿 is the nonlinear phase delay
caused by self-phase modulation (SPM) and cross-phase
modulation (XPM). Δ𝜙𝑁𝐿 = −(2𝜋𝐿𝑛2𝑃/3𝜆𝐴eff ) cos 2𝛼, 𝑛2 is
the nonlinear coefficient, 𝐴eff is the effective mode area, and
𝑃 is optical power.

The pulse propagation in the weak birefringent fiber
can be modeled well by two coupled nonlinear Schrodinger
equations (NLSE). However, the fiber lasers have compo-
nents which cannot be modeled by several phase modulation
terms in NLSEs. For example, a fiber laser has a gain with
a limited gain bandwidth (BW) and a saturable absorber
(SA). They do not induce the phase modulation, but they
definitely cause the amplitude modulation in the frequency
and time domain. To count the amplitude modulation effects
in a laser cavity properly, more terms needed to be added to

NLSEs.The resulting differential equations are called coupled
cubic Ginzburg-Landau equations (CGLE) [34], shown as
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(2)

where 𝑢𝑥 and 𝑢𝑦 denote the envelopes of the optical pulses
along the two orthogonal polarization axes of the fiber, and 𝛼
is the loss coefficient of the fiber. 𝛿 = (𝛽1𝑥−𝛽1𝑦)/2 is the group
velocity difference between the two polarization modes, 𝛽2
represents the fiber dispersion, Ω𝑔 is the bandwidth of the
laser gain, 𝑇 = 𝑡 − (𝛽1𝑥 + 𝛽1𝑦)𝑧/2 and 𝑧 indicate the pulse
local time and the propagation distance, respectively, and 𝑔
describes the gain function of EDF which is expressed by
𝑔 = 𝑔0 exp(−𝐸pulse/𝐸sat) [2], where 𝑔0 is the small signal gain
coefficient, related to the doping concentration, and𝐸sat is the
gain saturation energy, which corresponds to the pumping
strength [2, 34]. The pulse energy 𝐸pulse is given by 𝐸pulse =
∫𝑇𝑅/2
−𝑇𝑅/2

(|𝑢|2 + |V|2)𝑑𝜁, where 𝑇𝑅 is the cavity round-trip time.

3. Simulation Results and Discussion

The model is solved with a standard symmetric split-step
Fourier algorithm. The initial 𝑢𝑥 denotes an arbitrary signal,
while the initial 𝑢𝑦 denotes a weak continuous wave (CW)
light which contains a small segment dip on the top of it; by
appropriately adjusting the angle of the polarizer (analyzer)
and the linear cavity phase delay of the cavity, both dissipative
and dark solitons can be achieved in different directions of the
polarization. Since the saturation energy 𝐸sat is proportional
to the pumping strength [35], this means increasing 𝐸sat
corresponds to increasing the pump power in the practical
system. The following parameters are applied for the simu-
lations possibly matching the experimental conditions: 𝛼 =
0.2 dB/km, 𝑔0 = 2m−1, 𝛾 = 4.2W−1km−1 for EDF and
𝛾 = 1.3W−1km−1 for DCF, Ω𝑔 = 30 nm, EDF = 4.0m,
DCF = 1.8m, 𝛽2 = +31×10−3 ps2/m for EDF and 𝛽2 = +20×
10−3 ps2/m for DCF, and net cavity GVD 𝛽net ≈ 0.16 ps2,
𝜃 = 𝜋/8, 𝜑 = 5𝜋/8, 𝜙𝑃𝐶 = 0.96𝜋, and when 𝐸sat = 460 pJ,
it is capable of achieving both dissipative and dark solitons in
fiber laser.

The formation and evolution of dissipative and dark
solitons at𝐸sat = 460 pJ are illustrated in Figure 2.We can find
that the dissipative soliton pulse duration, pulse energy, and
peak power are about 2.96 ps, 229.19 pJ, and 89.16W in one
polarization, respectively. In the other polarization, we can
generate the dark soliton with 960 fs. Figures 2(c) and 2(d)
show that dissipative and dark solitons remain stable when
they circled 500 times in the cavity separately. According to
Figure 2(d), we found that the dip exist not only in the pulse
central but also in the edge, because in the simulationwe used
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Figure 1: A schematic diagram of the all-normal dispersion fiber laser; PBS: polarization beam splitter; HWP: half waveplate; QWP: quarter
waveplate; WDM: wavelength division multiplexer.
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Figure 2: (a) Temporal profile of the dissipative soliton at 𝐸sat = 460 pJ. (b) Temporal profile of the dark soliton at 𝐸sat = 460 pJ. (c) Dynamic
evolution of dissipative soliton. (d) Dynamic evolution of dark soliton.
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Figure 3: (a) Intracavity dissipative soliton evolution (at round = 498) in temporal domain. (b) Intracavity dark soliton evolution (at round =
498) in temporal domain.
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Figure 4: (a) With the increase of 𝐸sat, dissipative soliton pulse duration and peak power change. (b) With the increase of 𝐸sat, dark soliton
pulse duration and peak power change. (c) Temporal profile of the dissipative soliton at𝐸sat = 1560 pJ. (d) Temporal profile of the dark soliton
at 𝐸sat = 640 pJ.
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Figure 5: (a) With the decrease of 𝐸sat, the dark soliton pulse duration and peak power change. (b) With the decrease of 𝐸sat, the dissipative
soliton pulse duration and peak power change. (c) Temporal profile of the dark soliton at 𝐸sat = 58 pJ. (d) Temporal profile of the dissipative
soliton at 𝐸sat = 335 pJ.

the finite background pulse instead of infinite background
pulse to generate dark soliton. Numerical simulation shows
that if the background pulse width is 10 times the soliton
width, the transmission characteristics of finite and infinite
backgrounds of dark solitons are basically the same, so we
can ignore the edge dip. From Figures 3(a) and 3(b) we can
observe the impact of the various parts of the components for
peak power and pulse duration. After propagating the EDF,
both the dissipative soliton and the dark soliton peak power
show an increase trend. However, as for the pulse duration,
the dissipative soliton shows an increase while the dark
soliton remains nearly stable. When soliton transmitted to
PAPM, both dissipative and dark soliton pulse durations are
rapidly compressedwhile their peak power remains the same.
In the DCF, the dissipative soliton peak power related to the
previous EDF has been increased rapidly and then decreased
slowly, but it has no effect on the pulse duration. As for the
dark soliton, the peak power in DCF increases rapidly and
then remains unchanged, and the same basic has no effect

on dark soliton pulse width. These results are obtained when
𝐸sat = 460 pJ. Next, we analyze the various 𝐸sat effects for our
system.

Figure 4 shows the change of dissipative and dark solitons
with the increase of 𝐸sat. Figure 4(a) reflects the notion that
dissipative soliton pulse duration and peak power increase
with 𝐸sat. When 𝐸sat increases to about 980 pJ, peak power is
nearly unchanged, and when 𝐸sat reaches 1560 pJ, dissipative
soliton appears split in Figure 4(c). If we continue to increase
𝐸sat, the dissipative soliton will generate an unstable pulse
which is different from the phenomenon adopted in Liu [2].
However, Figure 4(b) shows that dark soliton varies with
different dissipative soliton; firstly the peak power increases
with 𝐸sat, but the dark soliton pulse duration gradually
decreases. When 𝐸sat increases to 550 pJ, the peak power
reduces gradually and eventually in 𝐸sat = 640 pJ, the dark
soliton disappears in Figure 4(d).

Figures 5(a) and 5(b) show that with the decrease of 𝐸sat,
both the dissipative soliton and the dark soliton peak power



6 International Journal of Optics

show a decrease trend. However, as for the pulse duration, the
dark soliton shows an increase while the dissipative soliton
remains nearly stable. When 𝐸sat is reduced to 335 pJ, the
dissipative soliton is unstable. When 𝐸sat is below 318 pJ, the
dissipative soliton cannot be generated. Then we conclude
that the generation of dissipative soliton requires a pump
power exceeding a threshold. When 𝐸sat is reduced to 58 pJ,
the dark soliton is unstable, but it is still capable of forming
a dark soliton. It can be found that obtaining a dark soliton
does not require high 𝐸sat, whichmeans the dark soliton does
not require high pump power.

4. Conclusion

We propose a novel way for controlling the generation of
the dissipative bright soliton and dark soliton operation of
lasers. Numerical simulation shows that, in an appropriate
pump power range, the dissipative bright soliton and dark
soliton can be generated simultaneously in the mode-locked
and non-mode-locked regions, respectively. When 𝐸sat is up
to 640 pJ, only dissipative soliton can be achieved, and the
dissipative soliton is unstable when 𝐸sat is close to 1560 pJ,
whereas it does not generate multipulse phenomenon [2].
Then if we decrease 𝐸sat to 335 pJ, only dark soliton can be
obtained. Hence, we conclude that the dissipative soliton
can tolerate higher pump power but its generation process
requires a high threshold, whereas dark soliton can be
obtained at a low pump power threshold.
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