58 research outputs found

    Self-Sampling Meta SAM: Enhancing Few-shot Medical Image Segmentation with Meta-Learning

    Full text link
    While the Segment Anything Model (SAM) excels in semantic segmentation for general-purpose images, its performance significantly deteriorates when applied to medical images, primarily attributable to insufficient representation of medical images in its training dataset. Nonetheless, gathering comprehensive datasets and training models that are universally applicable is particularly challenging due to the long-tail problem common in medical images. To address this gap, here we present a Self-Sampling Meta SAM (SSM-SAM) framework for few-shot medical image segmentation. Our innovation lies in the design of three key modules: 1) An online fast gradient descent optimizer, further optimized by a meta-learner, which ensures swift and robust adaptation to new tasks. 2) A Self-Sampling module designed to provide well-aligned visual prompts for improved attention allocation; and 3) A robust attention-based decoder specifically designed for medical few-shot learning to capture relationship between different slices. Extensive experiments on a popular abdominal CT dataset and an MRI dataset demonstrate that the proposed method achieves significant improvements over state-of-the-art methods in few-shot segmentation, with an average improvements of 10.21% and 1.80% in terms of DSC, respectively. In conclusion, we present a novel approach for rapid online adaptation in interactive image segmentation, adapting to a new organ in just 0.83 minutes. Code is publicly available on GitHub upon acceptance

    Dynamic Hyperbolic Attention Network for Fine Hand-object Reconstruction

    Full text link
    Reconstructing both objects and hands in 3D from a single RGB image is complex. Existing methods rely on manually defined hand-object constraints in Euclidean space, leading to suboptimal feature learning. Compared with Euclidean space, hyperbolic space better preserves the geometric properties of meshes thanks to its exponentially-growing space distance, which amplifies the differences between the features based on similarity. In this work, we propose the first precise hand-object reconstruction method in hyperbolic space, namely Dynamic Hyperbolic Attention Network (DHANet), which leverages intrinsic properties of hyperbolic space to learn representative features. Our method that projects mesh and image features into a unified hyperbolic space includes two modules, ie. dynamic hyperbolic graph convolution and image-attention hyperbolic graph convolution. With these two modules, our method learns mesh features with rich geometry-image multi-modal information and models better hand-object interaction. Our method provides a promising alternative for fine hand-object reconstruction in hyperbolic space. Extensive experiments on three public datasets demonstrate that our method outperforms most state-of-the-art methods.Comment: Accpeted by ICCV 202

    Combination of Decitabine and a Modified Regimen of Cisplatin, Cytarabine and Dexamethasone: A Potential Salvage Regimen for Relapsed or Refractory Diffuse Large B-Cell Lymphoma After Second-Line Treatment Failure

    Get PDF
    ObjectiveThe prognosis for patients with relapsed or refractory diffuse large B-cell lymphoma (R/R-DLBCL) after second-line treatment failure is extremely poor. This study prospectively observed the efficacy and safety of decitabine with a modified cisplatin, cytarabine, and dexamethasone (DHAP) regimen in R/R-DLBCL patients who failed second-line treatment.MethodsTwenty-one R/R-DLBCL patients were enrolled and treated with decitabine and a modified DHAP regimen. The primary endpoints were overall response rate (ORR) and safety. The secondary endpoints were progression-free survival (PFS) and overall survival (OS).ResultsORR reached 50% (complete response rate, 35%), five patients (25%) had stable disease (SD) with disease control rate (DCR) of 75%. Subgroup analysis revealed patients over fifty years old had a higher complete response rate compared to younger patients (P = 0.005), and relapsed patients had a better complete response rate than refractory patients (P = 0.031). Median PFS was 7 months (95% confidence interval, 5.1-8.9 months). Median OS was not achieved. One-year OS was 59.0% (95% CI, 35.5%-82.5%), and two-year OS was 51.6% (95% confidence interval, 26.9%-76.3%). The main adverse events (AEs) were grade 3/4 hematologic toxicities such as neutropenia (90%), anemia (50%), and thrombocytopenia (70%). Other main non-hematologic AEs were grade 1/2 nausea/vomiting (40%) and infection (50%). No renal toxicity or treatment-related death occurred.ConclusionDecitabine with a modified DHAP regimen can improve the treatment response and prognosis of R/R-DLBCL patients with good tolerance to AEs, suggesting this regimen has potential as a possible new treatment option for R/R-DLBCL patients after second-line treatment failure.Clinical Trial RegistrationClinicalTrials.gov, identifier: NCT03579082

    QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function

    Get PDF
    The RNA-binding protein QKI belongs to the hnRNP K-homology domain protein family, a well-known regulator of pre-mRNA alternative splicing and is associated with several neurodevelopmental disorders. Qki is found highly expressed in developing and adult hearts. By employing the human embryonic stem cell (hESC) to cardiomyocyte differentiation system and generating QKI-deficient hESCs (hESCs-QKIdel) using CRISPR/Cas9 gene editing technology, we analyze the physiological role of QKI in cardiomyocyte differentiation, maturation, and contractile function. hESCs-QKIdel largely maintain normal pluripotency and normal differentiation potential for the generation of early cardiogenic progenitors, but they fail to transition into functional cardiomyocytes. In this work, by using a series of transcriptomic, cell and biochemical analyses, and the Qki-deficient mouse model, we demonstrate that QKI is indispensable to cardiac sarcomerogenesis and cardiac function through its regulation of alternative splicing in genes involved in Z-disc formation and contractile physiology, suggesting that QKI is associated with the pathogenesis of certain forms of cardiomyopathies

    A Plane Extraction Approach in Inverse Depth Images Based on Region-Growing

    No full text
    Planar surfaces are prevalent components of man-made indoor scenes, and plane extraction plays a vital role in practical applications of computer vision and robotics, such as scene understanding, and mobile manipulation. Nowadays, most plane extraction methods are based on reconstruction of the scene. In this paper, plane representation is formulated in inverse-depth images. Based on this representation, we explored the potential to extract planes in images directly. A fast plane extraction approach, which employs the region growing algorithm in inverse-depth images, is presented. This approach consists of two main components: seeding, and region growing. In the seeding component, seeds are carefully selected locally in grid cells to improve exploration efficiency. After seeding, each seed begins to grow into a continuous plane in succession. Both greedy policy and a normal coherence check are employed to find boundaries accurately. During growth, neighbor coplanar planes are checked and merged to overcome the over-segmentation problem. Through experiments on public datasets and generated saw-tooth images, the proposed approach achieves 80.2% CDR (Correct Detection Rate) on the ABW SegComp Dataset, which has proven that it has comparable performance with the state-of-the-art. The proposed approach runs at 5 Hz on typical 680 × 480 images, which has shown its potential in real-time practical applications in computer vision and robotics with further improvement

    The Important Role of Global State for Multi-Agent Reinforcement Learning

    No full text
    Environmental information plays an important role in deep reinforcement learning (DRL). However, many algorithms do not pay much attention to environmental information. In multi-agent reinforcement learning decision-making, because agents need to make decisions combined with the information of other agents in the environment, this makes the environmental information more important. To prove the importance of environmental information, we added environmental information to the algorithm. We evaluated many algorithms on a challenging set of StarCraft II micromanagement tasks. Compared with the original algorithm, the standard deviation (except for the VDN algorithm) was smaller than that of the original algorithm, which shows that our algorithm has better stability. The average score of our algorithm was higher than that of the original algorithm (except for VDN and COMA), which shows that our work significantly outperforms existing multi-agent RL methods

    Differential Structure With Graphene Oxide for Both Humidity and Temperature Sensing

    No full text
    • …
    corecore