71 research outputs found

    LARGE modifies both mucin type O-glycans and N-linked glycans on α-DG in ldlD cells while without galactosylation.

    No full text
    <p>(A) Predicted structures of the glycans in N-linked, Mucin and O-mannosyl pathway in the ldlD cells. (B)The ldlD-LG cells were maintained in F12 nutrition mix media with 3% lipoprotein deficient bovine serum for more than 48 hours prior to the experiment. The cells were seeded into 6-well plates one day before addition of indicated sugars (Gal at 10 µM and GalNAc at 200 µM). After being treated with the sugar(s) for 24 hour, the cell lysates were harvested and equal amount of the lysates were loaded. An immuno-blotting assay was performed to detect the functional glycans and β-DG with the IIH6 and β-DG antibody, respectively. (C) The quantitative data of the expression levels of the functional glycans were obtained with AlphaImage AIC software based on densitometers followed the manufacture instructions. The IIH6 expression levels were normalized with the expression levels of β-DG (N = 3). (D) The lysates harvested from the ldlD-LG cells growing in the conditions as indicated and the experimental procedure is the same as described in (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0016866#pone-0016866-g004" target="_blank">Fig. 4A</a>). (E) Quantitative analysis of the data of (D) (N = 3).</p

    Stable overexpressing Large induces functional glycans in CHO cells.

    No full text
    <p>(A) Equal amount of lysates (60 µg proteins each lane) extracted from the cells stably expressing Large as indicated. The immuno-blotting procedure was described in methods section. The glycan antibody IIH6 and anti-MYC antibody (9E10) were used to detect the functional glycans and Large–MYC, respectively. In addition, an anti-β-DG (MANDAG2) antibody was used for detecting dystroglycan as the loading control. (B) The cells as indicated were seeded in 96-well plates and immuno-fluorescent staining was performed as described in the methods section. The images in top panel present the negative controls, while the images of bottom panel present the Large positive cells. A rabbit polyclonal anti-MYC antibody and the IIH6 antibody were used to stain the Large-MYC and glycosylated α-DG, respectively. The cells were also stained with DAPI to visualize the nucleus. The bar is 50 µm. (C) The cells as indicated were seeded in 96-well plate for 24 hour growth. The protocol of laminin clustering assay is described in the methods section. The laminins-DyLight488 was added to the cell culture for 6 hours incubation. A rabbit polyclonal anti-MYC antibody was used to stain Large-MYC protein followed by staining with secondary anti-rabbit antibodies conjugated with Alex594. In addition, DAPI was added to each well to stain the DNA for cells counting. The images were captured with a fluorescent microscope as described in methods section. The bar is 50 µm.</p

    Overexpressing DPM2 restores the Large function in the Lec15.2 cells.

    No full text
    <p>(A) Transient transfection was conducted to introduce mouse <i>DPM2</i> cDNA into the Lec 15.2-LG cells. 48 hours after transfection, the cell lysates were harvested and immuno-blotting assay and laminins overlay assay were conducted as described above. (B) A transient transfection was conducted to introduce DPM-GFP cDNA into the cells in 96-well plate. 48 hours the after transfection, cells were fixed and an indirect immuno-fluorescent staining with IIH6 antibody was conducted with the protocol as described in the methods section. The images were captured with a fluorescent microscope as described in methods section. The bar is 50 µm.</p

    Effects of Large-induced pathway on N-linked glycans.

    No full text
    <p>(A) All cells were grown in the completed media as described in the methods section and the lysates harvested from the indicated cells with stably expressing LARGE were treated with pNGase F for 4 hours, while it is absent in the negative controls reactions as described in the methods section. IIH6 antibody was used to determine the LARGE induced glycans, and the anti-β-DG antibody was used to determine the β-DG proteins as described above. The blot of the Lec15.2 samples with the IIH6 antibody had 30 mins exposure, while all other blots had about 10 seconds' exposure time.</p

    Stable overexpression levels of Large on glycosylation of α-DG in the Lec15 cells.

    No full text
    <p>Pro-5, B421 clones overexpressing (+) or without (−) Large-MYC or Lec15.2 cells overexpressing Large-MYC at high +(H), modest +(M) low +(L) or without Large-MYC (−) were tested by immuno-blot assay. The blot of the Lec15.2 samples had 10 mins exposure, while all other blot had about 10 seconds' exposure time.</p

    Correlation between tumor PD-L1 expression and intratumoral CD8+ T lymphocyte count.

    No full text
    <p>Correlation between tumor PD-L1 expression and intratumoral CD8+ T lymphocyte count.</p

    Clinical Significance of Programmed Death Ligand‑1 and Intra-Tumoral CD8<sup>+</sup> T Lymphocytes in Ovarian Carcinosarcoma

    No full text
    <div><p>Ovarian carcinosarcoma (OCS) accounts for high mortality and lacks effective therapeutic methods. So far, we lack reliable biomarkers capable of predicting the risk of aggressive course of the disease. Programmed death ligand-1 (PD-L1) is expressed in various tumors, and antibodies targeting its receptor programmed cell death 1 (PD-1) are emerging cancer therapeutics. This study was designed to evaluate the expression of PD-L1 and intratumoral CD8+ T lymphocytes by immunohistochemistry from 19 OCS patients who underwent primary surgery at Fudan University Shanghai Cancer Center. The correlations between PD-L1 expression and CD8+ T lymphocytes as well as the patients’ clinicopathologic characteristics were integrated and statistically analyzed. PD-L1-positive expression was observed in 52.6% of intraepithelial tissues and 47.4% of mesenchymal tissues (p = 0.370). Meanwhile, intraepithelial and mesenchymal CD8+ T lymphocytes were positive in 36.8% and 84.2% of OCS, respectively (p = 0.628). A significantly negative correlation was found between mesenchymal CD8+ T lymphocytes and PD-L1 expression (r = -0.630, p = 0.011). Intraepithelial PD-L1-positive expression was associated only with positive ascitic fluid (p = 0.008). Mesenchymal PD-L1-positive patients had a poorer survival than those with negative expression (p = 0.036). Meanwhile, intraepithelial PD-L1-positive patients had a better survival trend than PD-L1-negative patients, though no statistical significance was found (p = 0.061). There was a better postoperative survival noted in mesenchymal CD8-positive patients (p = 0.024), and allthough a better trend of OS was observed in intraepithelial CD8-positive patients, no statistical significance was found (p = 0.382). Positive tumoral CD8+ T lymphocytes and mesenchymal PD-L1-negative expression seem to be associated with better survival in OCS. It is possible that immunotherapy targeting PD-L1 pathway could be used in OCS.</p></div
    • …
    corecore