719 research outputs found

    Spin alignments of spiral galaxies within the large-scale structure from SDSS DR7

    Full text link
    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Galaxy Zoo 2 (GZ2), we investigate the alignment of spin axes of spiral galaxies with their surrounding large scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes of only have weak tendency to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a \cluster environment where all the three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.Comment: 8 pages, 7 figures, accepted for publication in Ap

    Interprovincial Migration and the Stringency of Energy Policy in China

    Get PDF
    Interprovincial migration flows involve substantial relocation of people and productive activity, with implications for regional energy use and greenhouse gas emissions. In China, these flows are not explicitly considered when setting energy and environmental targets for provinces, and their potential impact on the effectiveness of policy alternatives is ignored. We analyze how migration affects outcomes under energy intensity targets and energy caps. While both policies are part of the nation’s Twelfth Five Year Plan (2011–2015) and imposed at the provincial level, only the intensity targets are binding at present. We estimate a migration model, integrate it into a general equilibrium model that resolves each province in China, and simulate the effect of migration on energy use and economic activity. We find that although both types of policies are affected by uncertain migration flows, energy intensity targets (energy use indexed to economic output) are more robust than absolute caps. They are also more cost-effective, placing less burden on the relatively clean in-migration provinces. Our findings also underscore the value of moving from provincial targets to an integrated national emissions trading system, given that the choice of abatement strategies will adjust endogenously to labor relocation.The authors thank Eni S.p.A., ICF International, Shell International Limited, and the French Development Agency (AFD), founding sponsors of the China Energy and Climate Project. We also gratefully acknowledge the support of the Energy Information Administration at the U.S. Department of Energy. We are also thankful for support provided by the Ministry of Science and Technology of China, the National Development and Reform Commission, and Rio Tinto China. We further gratefully acknowledge the financial suppo rt for this work provided by the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants. This work is also supported by the DOE Integrated Assessment Grant (DE-FG02-94ER61937)

    Revealing the cosmic web dependent halo bias

    Full text link
    Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments: clusters, filaments, sheets and voids are defined within a state of the art high resolution NN-body simulation. Within those environments, we use both halo-dark matter cross-correlation and halo-halo auto correlation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly among the four different cosmic web environments we describe. With respect to the overall population, halos in clusters have significantly lower biases in the {1011.0∼1013.5h−1M⊙10^{11.0}\sim 10^{13.5}h^{-1}\rm M_\odot} mass range. In other environments however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass {∼1012.0h−1M⊙\sim 10^{12.0}h^{-1}\rm M_\odot}. Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos \la 10^{12.5}\msunh.Comment: 14 pages, 14 figures, ApJ accepte

    Review of possible mechanisms of radiotherapy resistance in cervical cancer

    Get PDF
    Radiotherapy is one of the main treatments for cervical cancer. Early cervical cancer is usually considered postoperative radiotherapy alone. Radiotherapy combined with cisplatin is the standard treatment for locally advanced cervical cancer (LACC), but sometimes the disease will relapse within a short time after the end of treatment. Tumor recurrence is usually related to the inherent radiation resistance of the tumor, mainly involving cell proliferation, apoptosis, DNA repair, tumor microenvironment, tumor metabolism, and stem cells. In the past few decades, the mechanism of radiotherapy resistance of cervical cancer has been extensively studied, but due to its complex process, the specific mechanism of radiotherapy resistance of cervical cancer is still not fully understood. In this review, we discuss the current status of radiotherapy resistance in cervical cancer and the possible mechanisms of radiotherapy resistance, and provide favorable therapeutic targets for improving radiotherapy sensitivity. In conclusion, this article describes the importance of understanding the pathway and target of radioresistance for cervical cancer to promote the development of effective radiotherapy sensitizers

    First Galaxy-Galaxy Lensing Measurement of Satellite Halo Mass in the CFHT Stripe-82 Survey

    Full text link
    We select satellite galaxies from the galaxy group catalog constructed with the SDSS spectroscopic galaxies and measure the tangential shear around these galaxies with source catalog extracted from CFHT/MegaCam Stripe-82 Survey to constrain the mass of subhalos associated with them. The lensing signal is measured around satellites in groups with masses in the range [10^{13}, 5x10^{14}]h^{-1}M_{sun}, and is found to agree well with theoretical expectation. Fitting the data with a truncated NFW profile, we obtain an average subhalo mass of log M_{sub}= 11.68 \pm 0.67 for satellites whose projected distances to central galaxies are in the range [0.1, 0.3] h^{-1}Mpc, and log M_{sub}= 11.68 \pm 0.76 for satellites with projected halo-centric distance in [0.3, 0.5] h^{-1}Mpc. The best-fit subhalo masses are comparable to the truncated subhalo masses assigned to satellite galaxies using abundance matching and about 5 to 10 times higher than the average stellar mass of the lensing satellite galaxies.Comment: 7 pages, 4 figures, accepted by MNRA

    The parameter-free Finger-Of-God model and its application to 21cm intensity mapping

    Full text link
    Using the galaxy catalog built from ELUCID N-body simulation and the semi-analytical galaxy formation model, we have built a mock HI intensity mapping map. We have implemented the Finger-of-God (FoG) effect in the map by considering the galaxy HI gas velocity dispersion. By comparing the HI power spectrum in the redshift space with the measurement from IllustrisTNG simulation, we have found that such FoG effect can explain the discrepancy between current mock map built from N-body simulation and Illustris TNG simulation. Then we built a parameter-free FoG model and a shot-noise model to calculate the HI power spectrum. We found that our model can accurately fit both the monopole and quadrupole moments of the HI matter power spectrum. Our method of building the mock HI intensity map and the parameter-free FoG model will be widely useful for the up-coming 21cm intensity mapping experiments, such as CHIME, Tianlai, BINGO, FAST and SKA. It is also crucial for us to study the non-linear effects in 21cm intensity mapping.Comment: 10 pages, 5 figures, 1 table, published on ApJ, updated to match the published versio

    Differential Modulation for Short Packet Transmission in URLLC

    Full text link
    One key feature of ultra-reliable low-latency communications (URLLC) in 5G is to support short packet transmission (SPT). However, the pilot overhead in SPT for channel estimation is relatively high, especially in high Doppler environments. In this paper, we advocate the adoption of differential modulation to support ultra-low latency services, which can ease the channel estimation burden and reduce the power and bandwidth overhead incurred in traditional coherent modulation schemes. Specifically, we consider a multi-connectivity (MC) scheme employing differential modulation to enable URLLC services. The popular selection combining and maximal ratio combining schemes are respectively applied to explore the diversity gain in the MC scheme. A first-order autoregressive model is further utilized to characterize the time-varying nature of the channel. Theoretically, the maximum achievable rate and minimum achievable block error rate under ergodic fading channels with PSK inputs and perfect CSI are first derived by using the non-asymptotic information-theoretic bounds. The performance of SPT with differential modulation and MC schemes is then analysed by characterizing the effect of differential modulation and time-varying channels as a reduction in the effective SNR. Simulation results show that differential modulation does offer a significant advantage over the pilot-assisted coherent scheme for SPT, especially in high Doppler environments.Comment: 15 pages, 9 figure
    • …
    corecore