33 research outputs found

    Ultra-low-dose spectral-detector computed tomography for the accurate quantification of pulmonary nodules: an anthropomorphic chest phantom study

    Get PDF
    PURPOSETo assess the quantification accuracy of pulmonary nodules using virtual monoenergetic images (VMIs) derived from spectral-detector computed tomography (CT) under an ultra-low-dose scan protocol.METHODSA chest phantom consisting of 12 pulmonary nodules was scanned using spectral-detector CT at 100 kVp/10 mAs, 100 kVp/20 mAs, 120 kVp/10 mAs, and 120 kVp/30 mAs. Each scanning protocol was repeated three times. Each CT scan was reconstructed utilizing filtered back projection, hybrid iterative reconstruction, iterative model reconstruction (IMR), and VMIs of 40–100 keV. The signal-to-noise ratio and air noise of images, absolute differences, and absolute percentage measurement errors (APEs) of the diameter, density, and volume of the four scan protocols and ten reconstruction images were compared.RESULTSWith each fixed reconstruction image, the four scanning protocols exhibited no significant differences in APEs for diameter and density (all P > 0.05). Of the four scan protocols and ten reconstruction images, APEs for nodule volume had no significant differences (all P > 0.05). At 100 kVp/10 mAs, APEs for density using IMR were the lowest (APE-mean: 6.69), but no significant difference was detected between VMIs at 50 keV (APE-mean: 11.69) and IMR (P = 0.666). In the subgroup analysis, at 100 kVp/10 mAs, there were no significant differences between VMIs at 50 keV and IMR in diameter and density (all P > 0.05). The radiation dose at 100 kVp/10 mAs was reduced by 77.8% compared with that at 120 kVp/30 mAs.CONCLUSIONCompared with IMR, reconstruction at 100 kVp/10 mAs and 50 keV provides a more accurate quantification of pulmonary nodules, and the radiation dose is reduced by 77.8% compared with that at 120 kVp/30 mAs, demonstrating great potential for ultra-low-dose spectral-detector CT

    A Delegation Attack Method on Attribute-Based Signatures and Probable Solutions

    No full text
    Attribute-based signature (ABS) assures the verifier that the message is endorsed by a signer whose attributes satisfy the claimed attribute policy (predicate); thus, it can provide identity authentication with privacy preservation in scenarios like anonymous communication and access control. However, we have found that the inherent delegatibility of attribute-based cryptography, which enables the utilization of relationship between policies, could make most of the existing ABS constructions not satisfy the unforgeability requirement under the common security model. In this paper, we dig into the delegatibility property of ABS for the first time and propose the potential delegation attack to break the unforgeability of the existing ABS constructions under the common security model. We also give two attack instances on a typical ABS construction to demonstrate the feasibility of the proposed delegation attack. Finally, we present two solutions to improve the above issue and give a further discussion about the delegatibility property of ABS

    Experimental Study of Phase Change Microcapsule Suspensions Applied in BIPV Construction

    No full text
    In this paper, a phase change microcapsule suspension MPCMS25 with a mass fraction of 10% was prepared with TH-ME25 as the phase change microcapsule particles and deionized water as the base fluid. The experimental benches of the Building Integrated Photovoltaic (BIPV) system and BIPV-MPCMS system were set up, and the comparative tests were carried out in Nanjing to study the optimization effect of phase change microcapsule suspension on the thermal and electrical properties of the BIPV system. The results show that MPCMS25 reduces the component temperature of the system by 8.8 °C and the backplane temperature by 11.1 °C. The optimization time of the component operating temperature and the backplane temperature is 9.5 h and 9.75 h, respectively. Delay appearance of peak module operating temperature by 114 min and peak backplane temperature by 125 min. In addition, the suspension can also improve the power conversion efficiency (PCE) of photovoltaic modules by 0~5%. After a simulation study on the energy consumption of a high-speed railway station, it is found that using the BIPV-MPCMS system as the building envelope can achieve an energy saving rate of about 8.5%

    Experimental Study of Phase Change Microcapsule Suspensions Applied in BIPV Construction

    No full text
    In this paper, a phase change microcapsule suspension MPCMS25 with a mass fraction of 10% was prepared with TH-ME25 as the phase change microcapsule particles and deionized water as the base fluid. The experimental benches of the Building Integrated Photovoltaic (BIPV) system and BIPV-MPCMS system were set up, and the comparative tests were carried out in Nanjing to study the optimization effect of phase change microcapsule suspension on the thermal and electrical properties of the BIPV system. The results show that MPCMS25 reduces the component temperature of the system by 8.8 °C and the backplane temperature by 11.1 °C. The optimization time of the component operating temperature and the backplane temperature is 9.5 h and 9.75 h, respectively. Delay appearance of peak module operating temperature by 114 min and peak backplane temperature by 125 min. In addition, the suspension can also improve the power conversion efficiency (PCE) of photovoltaic modules by 0~5%. After a simulation study on the energy consumption of a high-speed railway station, it is found that using the BIPV-MPCMS system as the building envelope can achieve an energy saving rate of about 8.5%

    Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence From InSAR and Optical Data

    No full text
    Abstract We derive the ALOS‐2 coseismic interferograms, pixel‐offsets and Sentinel‐2 sub‐pixel offsets of the 2023 Mw7.8 and Mw7.7 Kahramanmaras, Turkey earthquake sequence. Offset maps show that the sequence ruptured ∼300 km along the East Anatolian Fault (EAF) and ∼180 km along the secondary Cardak and Dogansehir faults. We infer the coseismic slip distribution and interseismic fault motion by inverting the co‐ and inter‐seismic observations. Inversion results show that the coseismic slip (∼8.0 m) and interseismic strike‐slip rate (∼4.6 mm/yr) on the main rupture of the Mw7.8 event are basically consistent with the ∼8.4 m and ∼3.9 mm/yr of the Mw7.7 event. Most coseismic slips of the Mw7.8 and Mw7.7 events occur within 10 and 12 km at depth, respectively, in keeping with the interseismic locking depth of 10.4 ± 3.3 km and 11.1 ± 3.1 km. This implies that the coseismic rupture kinematics correlate with the interseismic strain accumulation. Moreover, static stress changes show that the Mw7.7 event is likely promoted by ∼2 bar stress increase from the Mw7.8 event on the central section of its main rupture

    Identification of Human Brain Proteins for Bitter-Sweet Taste Perception: A Joint Proteome-Wide and Transcriptome-Wide Association Study

    No full text
    Objective: Bitter or sweet beverage perception is associated with alterations in brain structure and function. Our aim is to analyze the genetic association between bitter or sweet beverage perception and human brain proteins. Materials and methods: In our study, 8356 and 11,518 proteins were first collected from two reference datasets of human brain proteomes, the ROS/MAP and Banner. The bitter or sweet beverage perception-related proteome-wide association studies (PWAS) were then conducted by integrating recent genome-wide association study (GWAS) data (n = 422,300) of taste perception with human brain proteomes. The human brain gene expression profiles were collected from two reference datasets, including the brain RNA-seq (CBR) and brain RNA-seq splicing (CBRS). The taste perception-related transcriptome-wide association studies (TWAS) were finally performed by integrating the same GWAS data with human brain gene expression profiles to validate the PWAS findings. Results: In PWAS, four statistically significant proteins were identified using the ROS/MAP and then replicated using the Banner reference dataset (all permutated p 0.05), including ABCG2 for total bitter beverages and tea, CPNE1 for total bitter beverage, ACTR1B for artificially sweetened beverages, FLOT2 for alcoholic bitter beverages and total sweet beverages. In TWAS analysis, six statistically significant genes were detected by CBR and confirmed by the CBRS reference dataset (all permutated p 0.05), including PIGG for total bitter beverages and non-alcoholic bitter beverages, C3orf18 for total bitter beverages, ZSWIM7 for non-alcoholic bitter beverages, PEX7 for coffee, PKP4 for tea and RPLP2 for grape juice. Further comparison of the PWAS and TWAS found three common statistically significant proteins/genes identified from the Banner and CBR reference datasets, including THBS4 for total bitter beverages, CA4 for non-alcoholic bitter beverages, LIAS for non-grape juices. Conclusions: Our results support the potential effect of bitter or sweet beverage perception on brain function and identify several candidate brain proteins for bitter or sweet beverage perception

    Direct Printing of Flexible Multilayer Composite Electrodes Based on Electrohydrodynamic Printing

    No full text
    With the development of electronic devices toward thinner, lighter, and more flexible, the preparation of transparent electrodes for device assembly has garnered significant attention. Traditional transparent electrodes of indium tin oxides are brittle and difficult to adapt to deformations such as bending and stretching of flexible substrates. Flexible electrodes based on two-dimensional microstructures have become viable alternatives; however, the current electrode fabrication methods are complex, typically requiring the involvement of multiple machining equipment and the combination of multiple fabrication processes for machining and fabrication, and the simple, direct, and efficient integrated fabrication of electrodes is still a great challenge. Herein, an integrated manufacturing strategy for directly printing flexible multilayer composite electrodes based on an electrohydrodynamic printing process is proposed. The printing experimental system was designed. A finite element model was developed to make a preliminary selection of the parameters and the range of values affecting printing. Experiments were designed to analyze the combination of printing parameters to determine the range of applicability. The line width prediction model was used to predict the printing of structures with superior finish quality. Different printing modes were selected for different mesh electrode layers, electrode reinforcement layers, and encapsulation layers of the composite electrodes. Surface modification treatment was combined with direct printing for the direct assembly of electrodes. The electrode of finalized size 20 mm × 20 mm has good light transmission, conductivity, deformation, and mechanical stability; current efficiency and light-emitting diode (LED) light brightness before and after deformation are basically unchanged. The electrode in different bending diameters after 1000 cycles of resistance change is small and lightweight and has stable performance under different working conditions, good environmental adaptability, and excellent overall performance. The potential of composite electrodes for a wide range of applications in emerging wearable multifunctional electronic devices is shown by fabricating wearable strain sensors and heated films based on this electrode. This method can be used to manufacture simple, low-cost, high-performance, and high-efficiency electrodes
    corecore