136 research outputs found

    Identification of the elastic constant values for numerical simulation of high velocity impact on Dyneema ® woven fabrics using orthogonal experiments

    Get PDF
    Dyneema® fibres and fabrics are widely used for ballistic protection due to its lightweight and super mechanical properties against high strain rate impact, and finite element (FE) simulation and analysis are used to study the response to the impact in parallel to the experimental-based research methods. However, elastic constants of the yarn except the Young’s modulus were difficult to obtain and were basically assigned based on assumptions and approximations in the FE modelling, which caused some inaccuracies. This paper reports a study on the influence of each elastic constant of Dyneema® yarn model in modelling a single layer Dyneema® woven fabric against ballistic impact using the orthogonal experiment method. Orthogonal table L25 (56) was employed to analyse six factors (i.e. E11, E33, , G13, G23, and their interactions) with each having five levels. The ballistic modelling results were validated against the experimental results, viz. energy absorption, failure time of the first yarnbroken and number of failed yarns. According to the orthogonal analysis, G13 was shown as the most significant in influencing the simulated results, with a confidence level of more than 95%, and was the least significant. Through the orthogonal study, the combination of levels of the elastic constants that led to a significant agreement between the FE and practical results was identified

    Experimental Study on the Influence of Slickwater on Shale Permeability

    Get PDF
    There are two diametrically opposite views of the influence of slickwater on shale permeability among scholars at home and abroad. We used the shale outcrops rock samples from the Lower Silurian Longmaxi Formation in Sichuan Basin. The permeability of these dry samples before and after immersion in different solution systems were tested by pulse attenuation method. The experimental results show that the impregnation of different slickwater components and standard salt solution can promote the increase of the permeability of shale samples. The stress sensitivity of shale samples after liquid immersion is medium weak to weak. The sample stress sensitivity is weak after soaked by the synergist solution and Drag reducing agent solution, and the sensitivity of the sample stress is medium weak after immersed by the standard saline solution, defoamer solution and antiswelling solution; The Ki/K0 of the shale sample after liquid immersion on σi/σ0 is consistent with the exponential stress sensitive evaluation model. With the increase of soaking time, the increase of sample permeability increases first and then decreases

    An Integrated Approach for Assessing Aquatic Ecological Carrying Capacity: A Case Study of Wujin District in the Tai Lake Basin, China

    Get PDF
    Aquatic ecological carrying capacity is an effective method for analyzing sustainable development in regional water management. In this paper, an integrated approach is employed for assessing the aquatic ecological carrying capacity of Wujin District in the Tai Lake Basin, China. An indicator system is established considering social and economic development as well as ecological resilience perspectives. While calculating the ecological index, the normalized difference vegetation index (NDVI) is extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) time-series images, followed by spatial and temporal analysis of vegetation cover. Finally, multi-index assessment of aquatic ecological carrying capacity is carried out for the period 2000 to 2008, including both static and dynamic variables. The results reveal that aquatic ecological carrying capacity presents a slight upward trend in the past decade and the intensity of human activities still exceeded the aquatic ecological carrying capacity in 2008. In terms of human activities, population has decreased, GDP has quadrupled, and fertilizer application and industrial wastewater discharge have declined greatly in the past decade. The indicators representing aquatic ecosystem conditions have the lowest scores, which are primarily attributed to the water eutrophication problem. Yet the terrestrial ecosystem is assessed to be in better condition since topographic backgrounds and landscape diversity are at higher levels. Based on the work carried out, it is suggested that pollutant emission be controlled to improve water quality and agricultural development around Ge Lake (the largest lake in Wujin District) be reduced

    Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation

    Full text link
    Monocular 3D object detection task aims to predict the 3D bounding boxes of objects based on monocular RGB images. Since the location recovery in 3D space is quite difficult on account of absence of depth information, this paper proposes a novel unified framework which decomposes the detection problem into a structured polygon prediction task and a depth recovery task. Different from the widely studied 2D bounding boxes, the proposed novel structured polygon in the 2D image consists of several projected surfaces of the target object. Compared to the widely-used 3D bounding box proposals, it is shown to be a better representation for 3D detection. In order to inversely project the predicted 2D structured polygon to a cuboid in the 3D physical world, the following depth recovery task uses the object height prior to complete the inverse projection transformation with the given camera projection matrix. Moreover, a fine-grained 3D box refinement scheme is proposed to further rectify the 3D detection results. Experiments are conducted on the challenging KITTI benchmark, in which our method achieves state-of-the-art detection accuracy.Comment: 11 pages, 8 figures, AAAI202
    • …
    corecore