18 research outputs found

    Peste des Petits Ruminants Virus in Tibet, China

    Get PDF
    Serologic and molecular evidence indicates that peste des petits ruminants virus (PPRV) infection has emerged in goats and sheep in the Ngari region of southwestern Tibet, People’s Republic of China. Phylogenetic analysis confirms that the PPRV strain from Tibet is classified as lineage 4 and is closely related to viruses currently circulating in neighboring countries of southern Asia

    Fc fragment of IgG binding protein is correlated with immune infiltration levels in hepatocellular carcinoma

    Get PDF
    The Fc fragment of IgG binding protein (FCGBP) has been confirmed to play an important role in various cancers. However, the specific role of FCGBP in hepatocellular carcinoma (HCC) remains undefined. Thus, in this study, the enrichment analyses (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis) of FCGBP in HCC and extensive bioinformatic analyses using data of clinicopathologic characteristics, genetic expression and alterations, and immune cell infiltration were perfomed. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of FCGBP in both HCC tissues and cell lines. The subsequent results confirmed thatFCGBP overexpression positively correlated with poor prognosis in patients with HCC. Additionally, FCGBP expression could effectively distinguish tumor tissues from normal tissues, which was verified by qRT-PCR. The result was further confirmed by using HCC cell lines. The time-dependent survival receiver operator characteristic curve exhibited the strong ability of FCGBP to predict survival in patients with HCC. Additionally, we revealed the strong relationship between FCGBP expression and a number of classic regulatory targets and classical oncogenic signaling pathways of tumors. Finally, FCGBP was involved in the regulation of immune infiltration in HCC. Therefore, FCGBP has potential value in the diagnosis, treatment, and prognosis of HCC and may be a potential biomarker or therapeutic target

    Inversion of time-frequency electromagnetic well seismic modeling to probe the inner structure of deep volcanic reservoir: A case study of LD area in Bohai Bay Basin

    No full text
    The seismic reflection of volcanic reservoir in deep basin is disorderly due to the influence of energy shielding, which makes the exploration of volcanic reservoir very difficult. Aimed at the complex inner structure of deep volcanic reservoir with multi-phase superposition, the optimal offset, time-frequency electromagnetic acquisition technology of the excitation period window, time-frequency electromagnetic well seismic joint modeling inversion and electrical variation rhythm coding volcanic period interpretation technology are studied, which effectively improved the depth resolution and the recognition ability of the method. The research and application effect in LD area of Bohai Bay Basin are obvious. The results show that the volcanic eruptions of the third member of Shahejie Formation in the Red Star tectonic belt show the characteristics of "two strong three weak" of "weak-strong-strong-weak-weak" from bottom to top. Two volcanic eruption mechanisms are developed, which jointly control the distribution of volcanic reservoir facies in five periods. In Taoyuan structural belt, the volcanic eruption intensity of each stage of the third member of the Shahejie Formation is significantly weakened, and only one volcanic eruption mechanism is developed. Except for the relatively large distribution range of volcanic reservoir facies in stage 3, the volcanic rocks in other stages are mainly confined to the crater, mainly in eruption facies, and their scale is significantly reduced. The follow-up drilling results confirmed that the distribution of volcanic reservoir revealed by time-frequency electromagnetic was correct, which provided strong support for the large oil and gas discovery in this area and provided a successful example and technical methods for the detection of similar complex targets

    Sphingosine Promotes Embryo Biomass in Upland Cotton: A Biochemical and Transcriptomic Analysis

    No full text
    Sphingolipids are essential membrane components and signal molecules, but their regulatory role in cotton embryo growth is largely unclear. In this study, we evaluated the effects of treatment with the sphingolipid synthesis inhibitor fumonisin B1 (FB1), the serine palmityl transferase (SPT) inhibitor myriocin, the SPT sphingolipid product DHS (d18:0 dihydrosphingosine), and the post-hydroxylation DHS product PHS (t18:0 phytosphingosine) on embryo growth in culture, and performed comparative transcriptomic analysis on control and PHS-treated samples. We found that FB1 could inhibit cotton embryo development. At the five-day ovule/embryo developmental stage, PHS was the most abundant sphingolipid. An SPT enzyme inhibitor reduced the fresh weight of embryos, while PHS had the opposite effect. The transcriptomic analysis identified 2769 differentially expressed genes (1983 upregulated and 786 downregulated) in the PHS samples. A large number of transcription factors were highly upregulated, such as zinc finger, MYB, NAC, bHLH, WRKY, MADS, and GRF in PHS-treated samples compared to controls. The lipid metabolism and plant hormone (auxin, brassinosteroid, and zeatin) related genes were also altered. Our findings provide target metabolites and genes for cotton seed improvement

    A Three-Port Power Electronic Transformer Based on Magnetic Integration

    No full text
    This paper proposes a three-port power electronic transformer (PET) based on magnetic integration, where the modular multilevel converter (MMC) arm inductors and high-frequency transformer are integrated; thus, the low-voltage DC (LVDC) port can be directly obtained. Such a magnetic integration structure has advantages of reduction in magnetic volume and number of active switches, implying a compact structure and reduced cost. Compared with existing PETs, the proposed PET can save more than 60% of magnetic volume and more than 19% of device cost. The proposed PET is suitable for AC/DC hybrid distribution applications with medium-voltage DC (MVDC), medium-voltage AC (MVAC), and LVDC ports, especially for scenarios where moderate amounts of power (100 s of kW) are tapped from an LVDC port. The feasibility of the proposed three-port PET has been verified by simulation and experimental results

    Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7

    No full text
    Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL

    A Three-Port Power Electronic Transformer Based on Magnetic Integration

    No full text
    This paper proposes a three-port power electronic transformer (PET) based on magnetic integration, where the modular multilevel converter (MMC) arm inductors and high-frequency transformer are integrated; thus, the low-voltage DC (LVDC) port can be directly obtained. Such a magnetic integration structure has advantages of reduction in magnetic volume and number of active switches, implying a compact structure and reduced cost. Compared with existing PETs, the proposed PET can save more than 60% of magnetic volume and more than 19% of device cost. The proposed PET is suitable for AC/DC hybrid distribution applications with medium-voltage DC (MVDC), medium-voltage AC (MVAC), and LVDC ports, especially for scenarios where moderate amounts of power (100 s of kW) are tapped from an LVDC port. The feasibility of the proposed three-port PET has been verified by simulation and experimental results

    Fibroblasts in metastatic lymph nodes confer cisplatin resistance to ESCC tumor cells via PI16

    No full text
    Abstract Although many studies have compared tumor fibroblasts (T-Fbs) and nontumor fibroblasts (N-Fbs), less is understood about the stromal contribution of metastatic lymph node fibroblasts (LN-Fbs) to the evolving microenvironment. Here, we explored the characteristics of LN-Fbs in esophageal squamous cell carcinoma (ESCC) and the interactions between fibroblasts and ESCC tumor cells in metastatic lymph nodes. Fibroblasts were isolated from tumor, nontumor and metastatic lymph node tissues from different patients with ESCC. Transcriptome sequencing was performed on the fibroblasts. Tumor growth and drug-resistance assays were carried out, and characteristics of T-Fbs, N-Fbs and LN-Fbs were determined. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assay the culture medium of fibroblasts. The results demonstrated that fibroblasts derived from different tissues had different characteristics. Coculture with LN-Fbs conditioned medium inhibited ESCC tumor cell growth and induced chemoresistance in ESCC cells. LN-Fbs induced chemoresistance to cisplatin in ESCC cells by secreting PI16. Coculture with LN-Fbs conditioned medium decreased cisplatin-induced apoptosis in ESCC cells by regulating the p38 and JNK cell signaling pathways. Survival analyses showed that patients with high PI16 expression in Fbs of lymph nodes exhibited worse overall survival. We also examined PI16 expression in interstitial tissues in ESCC tumor samples of patients receiving platinum-based therapy postsurgery and found that high PI16 expression in tumor interstitial tissues was an independent prognostic factor for ESCC patients. In addition, an in vivo assay demonstrated that PI16 knockdown increased the sensitivity of ESCC cells to cisplatin. Our results suggest that fibroblasts in metastatic lymph nodes decrease apoptosis of ESCC cells via PI16, thereby providing a cisplatin-resistance niche and supporting ESCC tumor cells to survive in metastatic lymph nodes. PI16 is also a potential target for effectively blocking the chemoresistance niche signaling circuit in response to cisplatin

    EjFAD8 Enhances the Low-Temperature Tolerance of Loquat by Desaturation of Sulfoquinovosyl Diacylglycerol (SQDG)

    No full text
    Loquat (Eriobotrya japonica Lindl.) is an evergreen fruit tree of Chinese origin, and its autumn–winter flowering and fruiting growth habit means that its fruit development is susceptible to low-temperature stress. In a previous study, the triploid loquat (B431 × GZ23) has been identified with high photosynthetic efficiency and strong resistance under low-temperature stress. Analysis of transcriptomic and lipidomic data revealed that the fatty acid desaturase gene EjFAD8 was closely associated with low temperatures. Phenotypic observations and measurements of physiological indicators in Arabidopsis showed that overexpressing-EjFAD8 transgenic plants were significantly more tolerant to low temperatures compared to the wild-type. Heterologous overexpression of EjFAD8 enhanced some lipid metabolism genes in Arabidopsis, and the unsaturation of lipids was increased, especially for SQDG (16:0/18:1; 16:0/18:3), thereby improving the cold tolerance of transgenic lines. The expression of ICE-CBF-COR genes were further analyzed so that the relationship between fatty acid desaturase and the ICE-CBF-COR pathway can be clarified. These results revealed the important role of EjFAD8 under low-temperature stress in triploid loquat, the increase expression of FAD8 in loquat under low temperatures lead to desaturation of fatty acids. On the one hand, overexpression of EjFAD8 in Arabidopsis increased the expression of ICE-CBF-COR genes in response to low temperatures. On the other hand, upregulation of EjFAD8 at low temperatures increased fatty acid desaturation of SQDG to maintain the stability of photosynthesis under low temperatures. This study not only indicates that the EjFAD8 gene plays an important role in loquat under low temperatures, but also provides a theoretical basis for future molecular breeding of loquat for cold resistance
    corecore