769 research outputs found

    Question-Answering with Grammatically-Interpretable Representations

    Full text link
    We introduce an architecture, the Tensor Product Recurrent Network (TPRN). In our application of TPRN, internal representations learned by end-to-end optimization in a deep neural network performing a textual question-answering (QA) task can be interpreted using basic concepts from linguistic theory. No performance penalty need be paid for this increased interpretability: the proposed model performs comparably to a state-of-the-art system on the SQuAD QA task. The internal representation which is interpreted is a Tensor Product Representation: for each input word, the model selects a symbol to encode the word, and a role in which to place the symbol, and binds the two together. The selection is via soft attention. The overall interpretation is built from interpretations of the symbols, as recruited by the trained model, and interpretations of the roles as used by the model. We find support for our initial hypothesis that symbols can be interpreted as lexical-semantic word meanings, while roles can be interpreted as approximations of grammatical roles (or categories) such as subject, wh-word, determiner, etc. Fine-grained analysis reveals specific correspondences between the learned roles and parts of speech as assigned by a standard tagger (Toutanova et al. 2003), and finds several discrepancies in the model's favor. In this sense, the model learns significant aspects of grammar, after having been exposed solely to linguistically unannotated text, questions, and answers: no prior linguistic knowledge is given to the model. What is given is the means to build representations using symbols and roles, with an inductive bias favoring use of these in an approximately discrete manner

    Learning Semantic Representations for the Phrase Translation Model

    Get PDF
    This paper presents a novel semantic-based phrase translation model. A pair of source and target phrases are projected into continuous-valued vector representations in a low-dimensional latent semantic space, where their translation score is computed by the distance between the pair in this new space. The projection is performed by a multi-layer neural network whose weights are learned on parallel training data. The learning is aimed to directly optimize the quality of end-to-end machine translation results. Experimental evaluation has been performed on two Europarl translation tasks, English-French and German-English. The results show that the new semantic-based phrase translation model significantly improves the performance of a state-of-the-art phrase-based statistical machine translation sys-tem, leading to a gain of 0.7-1.0 BLEU points

    Attentive Tensor Product Learning

    Full text link
    This paper proposes a new architecture - Attentive Tensor Product Learning (ATPL) - to represent grammatical structures in deep learning models. ATPL is a new architecture to bridge this gap by exploiting Tensor Product Representations (TPR), a structured neural-symbolic model developed in cognitive science, aiming to integrate deep learning with explicit language structures and rules. The key ideas of ATPL are: 1) unsupervised learning of role-unbinding vectors of words via TPR-based deep neural network; 2) employing attention modules to compute TPR; and 3) integration of TPR with typical deep learning architectures including Long Short-Term Memory (LSTM) and Feedforward Neural Network (FFNN). The novelty of our approach lies in its ability to extract the grammatical structure of a sentence by using role-unbinding vectors, which are obtained in an unsupervised manner. This ATPL approach is applied to 1) image captioning, 2) part of speech (POS) tagging, and 3) constituency parsing of a sentence. Experimental results demonstrate the effectiveness of the proposed approach

    Tensor Product Generation Networks for Deep NLP Modeling

    Full text link
    We present a new approach to the design of deep networks for natural language processing (NLP), based on the general technique of Tensor Product Representations (TPRs) for encoding and processing symbol structures in distributed neural networks. A network architecture --- the Tensor Product Generation Network (TPGN) --- is proposed which is capable in principle of carrying out TPR computation, but which uses unconstrained deep learning to design its internal representations. Instantiated in a model for image-caption generation, TPGN outperforms LSTM baselines when evaluated on the COCO dataset. The TPR-capable structure enables interpretation of internal representations and operations, which prove to contain considerable grammatical content. Our caption-generation model can be interpreted as generating sequences of grammatical categories and retrieving words by their categories from a plan encoded as a distributed representation
    • …
    corecore