5 research outputs found

    Single-Crystalline Organic–Inorganic Layered Cobalt Hydroxide Nanofibers: Facile Synthesis, Characterization, and Reversible Water-Induced Structural Conversion

    No full text
    New pink organic–inorganic layered cobalt hydroxide nanofibers intercalated with benzoate ions [Co­(OH)­(C<sub>6</sub>H<sub>5</sub>COO)·H<sub>2</sub>O] have been synthesized by using cobalt nitrate and sodium benzoate as reactants in water with no addition of organic solvent or surfactant. The high-purity nanofibers are single-crystalline in nature and very uniform in size with a diameter of about 100 nm and variable lengths over a wide range from 200 μm down to 2 μm by simply adjusting reactant concentrations. The as-synthesized products are well-characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), fast Fourier transforms (FFT), X-ray diffraction (XRD), energy dispersive X-ray spectra (EDX), X-ray photoelectron spectra (XPS), elemental analysis (EA), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), and UV–vis diffuse reflectance spectra (UV–vis). Our results demonstrate that the structure consists of octahedral cobalt layers and the benzoate anions, which are arranged in a bilayer due to the π–π stacking of small aromatics. The carboxylate groups of benzoate anions are coordinated to Co<sup>II</sup> ions in a strong bridging mode, which is the driving force for the anisotropic growth of nanofibers. When NaOH is added during the synthesis, green irregular shaped platelets are obtained, in which the carboxylate groups of benzoate anions are coordinated to the Co<sup>II</sup> ions in a unidentate fashion. Interestingly, the nanofibers exhibit a reversible transformation of the coordination geometry of the Co<sup>II</sup> ions between octahedral and pseudotetrahedral with a concomitant color change between pink and blue, which involves the loss and reuptake of unusual weakly coordinated water molecules without destroying the structure. This work offers a facile, cost-effective, and green strategy to rationally design and synthesize functional nanomaterials for future applications in catalysis, magnetism, gas storage or separation, and sensing technology

    Image_1_Galectin-9/Tim-3 pathway mediates dopaminergic neurodegeneration in MPTP-induced mouse model of Parkinson’s disease.TIF

    No full text
    Galectin-9 (Gal-9) is a crucial immunoregulatory mediator in the central nervous system. Microglial activation and neuroinflammation play a key role in the degeneration of dopaminergic neurons in the substantia nigra (SN) in Parkinson’s disease (PD). However, it remains unknown whether Gal-9 is involved in the pathogenesis of PD. We found that MPP+ treatment promoted the expression of Gal-9 and pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and MIP-1α) in a concentration-dependent manner in BV2 cells. Gal-9 enhanced neurodegeneration and oxidative stress induced by MPP+ in SH-SY5Y cells and primary neurons. Importantly, deletion of Gal-9 or blockade of Tim-3 ameliorated microglial activation, reduced dopaminergic neuronal loss, and improved motor performance in an MPTP-induced mouse model of PD. These observations demonstrate a pathogenic role of the Gal-9/Tim-3 pathway in exacerbating microglial activation, neuroinflammation, oxidative stress, and dopaminergic neurodegeneration in the pathogenesis of PD.</p

    DataSheet1_Elucidation of the mechanism of action of ailanthone in the treatment of colorectal cancer: integration of network pharmacology, bioinformatics analysis and experimental validation.ZIP

    No full text
    Background: Ailanthone, a small compound derived from the bark of Ailanthus altissima (Mill.) Swingle, has several anti-tumour properties. However, the activity and mechanism of ailanthone in colorectal cancer (CRC) remain to be investigated. This study aims to comprehensively investigate the mechanism of ailanthone in the treatment of CRC by employing a combination of network pharmacology, bioinformatics analysis, and molecular biological technique.Methods: The druggability of ailanthone was examined, and its targets were identified using relevant databases. The RNA sequencing data of individuals with CRC obtained from the Cancer Genome Atlas (TCGA) database were analyzed. Utilizing the R programming language, an in-depth investigation of differentially expressed genes was carried out, and the potential target of ailanthone for anti-CRC was found. Through the integration of protein-protein interaction (PPI) network analysis, GO and KEGG enrichment studies to search for the key pathway of the action of Ailanthone. Then, by employing molecular docking verification, flow cytometry, Transwell assays, and Immunofluorescence to corroborate these discoveries.Results: Data regarding pharmacokinetic parameters and 137 target genes for ailanthone were obtained. Leveraging The Cancer Genome Atlas database, information regarding 2,551 differentially expressed genes was extracted. Subsequent analyses, encompassing protein–protein interaction network analysis, survival analysis, functional enrichment analysis, and molecular docking verification, revealed the PI3K/AKT signaling pathway as pivotal mediators of ailanthone against CRC. Additionally, the in vitro experiments indicated that ailanthone substantially affects the cell cycle, induces apoptosis in CRC cells (HCT116 and SW620 cells), and impedes the migration and invasion capabilities of these cells. Immunofluorescence staining showed that ailanthone significantly inhibited the phosphorylation of AKT protein and suppressed the activation of the PI3K/AKT signaling pathway, thereby inhibiting the proliferation and metastasis of CRC cells.Conclusion: Therefore, our findings indicate that Ailanthone exerts anti-CRC effects primarily by inhibiting the activation of the PI3K/AKT pathway. Additionally, we propose that Ailanthone holds potential as a therapeutic agent for the treatment of human CRC.</p

    Investigating the mechanism of Sinisan formula in depression treatment: a comprehensive analysis using GEO datasets, network pharmacology, and molecular docking

    No full text
    The herbal formula Sinisan (SNS) is a commonly used treatment for depression; however, its mechanism of action remains unclear. This article uses a combination of the GEO database, network pharmacology and molecular docking technologies to investigate the mechanism of action of SNS. The aim is to provide new insights and methods for future depression treatments. The study aims to extract effective compounds and targets for the treatment of depression from the T CMSP database. Relevant targets were searched using the GEO, Disgenet, Drugbank, PharmGKB and T T D databases, followed by screening of core targets. In addition, GO and KEGG pathway enrichment analyses were performed to explore potential pathways for the treatment of depression. Molecular docking was used to evaluate the potential targets and compounds and to identify the optimal core protein-compound complex. Molecular dynamics was used to further investigate the dynamic variability and stability of the complex. The study identified 118 active SNS components and 208 corresponding targets. Topological analysis of P P I networks identified 11 core targets. GO and KEGG pathway enrichment analyses revealed that the mechanism of action for depression involves genes associated with inflammation, apoptosis, oxidative stress, and the MAP K3 and P I3K-Akt signalling pathways. Molecular docking and dynamics simulations showed a strong binding affinity between these compounds and the screened targets, indicating promising biological activity. The present study investigated the active components, targets and pathways of SNS in the treatment of depression. Through a preliminary investigation, key signalling pathways and compounds were identified. These findings provide new directions and ideas for future research on the therapeutic mechanism of SNS and its clinical application in the treatment of depression. Communicated by Ramaswamy H. Sarma</p

    DataSheet2_Elucidation of the mechanism of action of ailanthone in the treatment of colorectal cancer: integration of network pharmacology, bioinformatics analysis and experimental validation.ZIP

    No full text
    Background: Ailanthone, a small compound derived from the bark of Ailanthus altissima (Mill.) Swingle, has several anti-tumour properties. However, the activity and mechanism of ailanthone in colorectal cancer (CRC) remain to be investigated. This study aims to comprehensively investigate the mechanism of ailanthone in the treatment of CRC by employing a combination of network pharmacology, bioinformatics analysis, and molecular biological technique.Methods: The druggability of ailanthone was examined, and its targets were identified using relevant databases. The RNA sequencing data of individuals with CRC obtained from the Cancer Genome Atlas (TCGA) database were analyzed. Utilizing the R programming language, an in-depth investigation of differentially expressed genes was carried out, and the potential target of ailanthone for anti-CRC was found. Through the integration of protein-protein interaction (PPI) network analysis, GO and KEGG enrichment studies to search for the key pathway of the action of Ailanthone. Then, by employing molecular docking verification, flow cytometry, Transwell assays, and Immunofluorescence to corroborate these discoveries.Results: Data regarding pharmacokinetic parameters and 137 target genes for ailanthone were obtained. Leveraging The Cancer Genome Atlas database, information regarding 2,551 differentially expressed genes was extracted. Subsequent analyses, encompassing protein–protein interaction network analysis, survival analysis, functional enrichment analysis, and molecular docking verification, revealed the PI3K/AKT signaling pathway as pivotal mediators of ailanthone against CRC. Additionally, the in vitro experiments indicated that ailanthone substantially affects the cell cycle, induces apoptosis in CRC cells (HCT116 and SW620 cells), and impedes the migration and invasion capabilities of these cells. Immunofluorescence staining showed that ailanthone significantly inhibited the phosphorylation of AKT protein and suppressed the activation of the PI3K/AKT signaling pathway, thereby inhibiting the proliferation and metastasis of CRC cells.Conclusion: Therefore, our findings indicate that Ailanthone exerts anti-CRC effects primarily by inhibiting the activation of the PI3K/AKT pathway. Additionally, we propose that Ailanthone holds potential as a therapeutic agent for the treatment of human CRC.</p
    corecore