108 research outputs found

    Transcriptome analysis reveals the important roles of a two-component system, flagellar assembly, active efflux system and outer membrane proteins in the anti-quinolone ability of Vibrio harveyi from orange-spotted grouper (<em>Epinephelus coioides</em>)

    Get PDF
    The drug resistance of Vibrio harveyi in aquaculture became more severe because the control of Vibriosis depends majorly on the current antibiotics. Transcriptomes of a wild-type strain (VS) and its quinolone-resistant mutants (VR) of V. harveyi were respectively sequenced by RNA-seq technology. A total of 2,082 unigenes were obtained after de novo splicing and assembly. 129 genes were identified with significant differential expression in strain VR compared to strain VS, among which 65 were up-regulated and 64 down-regulated. Then, functional annotation and enrichment analysis of these differentially expressed genes (DEGs) were performed. GO enrichment results showed that DEGs focused mainly on cell structure, substance metabolism, and transporter. COG classification of the DEGs mainly focused on amino acid transport and metabolism, cell wall/membrane biosynthesis, carbohydrate transport and metabolism, ribosomal structure, and biosynthesis. KEGG pathways related to a two-component system, ABC transport system and flagellar assembly (ko02040) were enriched significantly, and 9 genes associated with quinolone-resistance ability, including genes for resistance-related transport proteins, outer membrane proteins, and DNA repair-related proteins were discovered through analysis of the drug-resistance related genes. Ten DEGs (including the above part genes of 9 drug resistance-related genes) in the transcriptome data were taken to analyze their expression with real-time qPCR. The results were the same as the changes of the above transcriptome analysis, further confirming the reliability of the transcriptome sequencing and data analysis. In a word, genes from a two-component system, flagellar assembly, active efflux system and outer membrane proteins take great roles in the quinolone-resistance of V. harveyi. These results provide enough information for further study on the molecular mechanism of quinolone-resistance and give a helpful transcriptomic resource to unravel the contact between quinolone-resistance and metabolic pathways in Vibrios

    Ultra-broadband Microwave Metamaterial Absorber

    Full text link
    A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-frequencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7GHz, and the absorption is kept large when the incident angle is smaller than 60 degrees. The experimental results agree well with the numerical simulation.Comment: 10 pages, 5 figures,submitted to AP

    Monad: Towards Cost-effective Specialization for Chiplet-based Spatial Accelerators

    Full text link
    Advanced packaging offers a new design paradigm in the post-Moore era, where many small chiplets can be assembled into a large system. Based on heterogeneous integration, a chiplet-based accelerator can be highly specialized for a specific workload, demonstrating extreme efficiency and cost reduction. To fully leverage this potential, it is critical to explore both the architectural design space for individual chiplets and different integration options to assemble these chiplets, which have yet to be fully exploited by existing proposals. This paper proposes Monad, a cost-aware specialization approach for chiplet-based spatial accelerators that explores the tradeoffs between PPA and fabrication costs. To evaluate a specialized system, we introduce a modeling framework considering the non-uniformity in dataflow, pipelining, and communications when executing multiple tensor workloads on different chiplets. We propose to combine the architecture and integration design space by uniformly encoding the design aspects for both spaces and exploring them with a systematic ML-based approach. The experiments demonstrate that Monad can achieve an average of 16% and 30% EDP reduction compared with the state-of-the-art chiplet-based accelerators, Simba and NN-Baton, respectively.Comment: To be published in ICCAD 202

    Few-Shot Classification With Feature Reconstruction Bias

    Get PDF
    Few-shot classification aims to classify unseen samples by learning from very few labeled samples. Very recently, reconstruction-based methods have been proposed and shown superior performance on few-shot fine-grained image classification, which, on top of the challenge of few labeled samples, faces the difficulty of identifying subtle differences between sub-categories. In essence, these methods reconstruct unseen samples from few seen samples and use the distance between the original unseen samples and their reconstruction as the criterion for classification. However, as pointed out in this paper, a bias is introduced in the overall distribution between the reconstructed features and original features, which consequently affects the distance calculation and subsequent classification. To address this issue, we propose a new concept of Feature Reconstruction Bias (FRB), which can be computed easily in the training stage without introducing any new parameters. Moreover, we propose to use this bias to correct query features in the test stage, which is shown to increase inter-class distances and decrease intra-class distances. Experiments on four fine-grained benchmarks demonstrate the effectiveness of our approach, with state-of-the-art performance achieved in most scenarios

    Chrysin ameliorates synovitis and fibrosis of osteoarthritic fibroblast-like synoviocytes in rats through PERK/TXNIP/NLRP3 signaling

    Get PDF
    Objective: Synovitis and fibrosis are common pathological features of knee osteoarthritis (KOA). The interaction of synovitis and fibrosis can promote KOA progression. Chrysin (CHR), a natural flavonoid, may treat inflammation and prevent fibrosis. However, the effect and mechanism of CHR in KOA synovitis and fibrosis remains unclear.Methods: The KOA model was established in male SD rats by anterior cruciate ligament transection (ACLT), and histological analysis was used to evaluate synovitis and fibrosis. IL-6, IL-1β and TNF-α mRNA expression in synovial tissue was measured by qRT‒PCR. Immunohistochemistry (IHC) was performed to detect GRP78, ATF-6 and TXNIP expression in vivo. Synovial fibroblasts (SFs) were treated with TGF-β1 to stimulate the inflammatory response and fibrosis. CCK-8 assays were used to detect the viability of CHR-treated SFs. The IL-1β level was detected by immunofluorescence analysis. Coimmunoprecipitation (Co-IP) and double immunofluorescence colocalization were used to detect the physiological interaction between TXNIP and NLRP3. The expression of fibrosis-related mediators and PERK/TXNIP/NLRP3 signaling molecules was detected by western blotting and qRT-PCR.Results: Four weeks after CHR treatment, pathological sections and associated scores showed that CHR improved synovitis and fibrosis in the ACLT model. In vitro, CHR attenuated the TGF-β1-induced inflammatory response and fibrosis in SFs. Moreover, CHR suppressed the expression of synovial fibrosis markers and PERK/TXNIP/NLRP3 signaling molecules in the synovial tissue of rats with ACLT and cultured SFs. More importantly, we found that CHR inhibited TXNIP-NLRP3 interactions in TGF-β-induced SFs.Conclusion: Our findings indicate that CHR can ameliorate synovitis and fibrosis in KOA. The underlying mechanism may be related to the PERK/TXNIP/NLRP3 signaling pathway

    Resting-State Activity of Prefrontal-Striatal Circuits in Internet Gaming Disorder: Changes With Cognitive Behavior Therapy and Predictors of Treatment Response

    Get PDF
    Cognitive behavior therapy (CBT) is effective for the treatment of Internet gaming disorder (IGD). However, the mechanisms by which CBT improves IGD-related clinical symptoms remain unknown. This study aimed to discover the therapeutic mechanism of CBT in IGD subjects using resting-state functional magnetic resonance imaging (rsfMRI). Twenty-six IGD subjects and 30 matched healthy controls (HCs) received rsfMRI scan and clinical assessments; 20 IGD subjects completed CBT and then were scanned again. The amplitude of low-frequency (ALFF) values and the functional connectivity (FC) between the IGD group and the HC group were compared at baseline, as well as the ALFF values and FC before and after the CBT in the IGD group. Prior to treatment, the IGD group exhibited significantly increased ALFF values in the bilateral putamen, the right medial orbitofrontal cortex (OFC), the bilateral supplementary motor area (SMA), the left postcentral gyrus, and the left anterior cingulate (ACC) compared with the HC group. The HC group showed significantly increased FC values between the left medial OFC and the putamen compared with the IGD group, the FC values of IGD group were negatively associated with the BIS-11 scores before treatment. After the CBT, the weekly gaming time was significantly shorter, and the CIAS and BIS-II scores were significantly lower. The ALFF values in the IGD subjects significantly decreased in the left superior OFC and the left putamen, and the FC between them significantly increased after the CBT. The degree of the FC changes (ΔFC/Pre−FC) was positively correlated with the scale of the CIAS scores changes (ΔCIAS/Pre−CIAS) in the IGD subjects. CBT could regulate the abnormal low-frequency fluctuations in prefrontal-striatal regions in IGD subjects and could improve IGD-related symptoms. Resting-state alternations in prefrontal-striatal regions may reveal the therapeutic mechanism of CBT in IGD subjects

    Altered auditory processes pattern predicts cognitive decline in older adults: different modalities with aging

    Get PDF
    BackgroundCohort studies have shown that older adults with hearing impairment as assessed by self-report or behavioral measures are at higher risk of developing dementia many years later. A fine-grained examination of auditory processing holds promise for more effective screening of older adults at risk of cognitive decline. The auditory mismatch negativity (MMN) measure enables one to gain insights into the neurobiological substrate of central auditory processing. We hypothesized that older adults showing compromised indexes of MMN at baseline would exhibit cognitive decline at the one-year follow-up.MethodsWe performed cognitive evaluations with the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; Form A and Form B) in 108 community-dwelling older adults and acquired EEG via the classic passive auditory oddball paradigm at baseline and 12-month follow-up.ResultsThe results showed that young-old adults with future cognitive decline showed a decrease in MMN peak amplitude, accompanied by a forward-shifting latency, whereas in older adults it showed a delay in MMN latency, and unchanged MMN peak amplitude at midline electrodes (Fz, FCz and Cz). Furthermore, the peak amplitude of the MMN decreases with age in older adults aged 70–80 years rather than 60–70 years or &gt; 80 years.ConclusionThe altered MMN model exists in different aging stages and it’s a promising electrophysiological predictor of cognitive decline in older adults. In addition, further research is needed to determine the neural mechanisms and potential implications of the accelerated decline in MMN in older adults
    corecore