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Abstract—Few-shot classification aims to classify unseen sam-
ples by learning from very few labeled samples. Very recently,
reconstruction-based methods have been proposed and shown
superior performance on few-shot fine-grained image classifi-
cation, which, on top of the challenge of few labeled samples,
faces the difficulty of identifying subtle differences between sub-
categories. In essence, these methods reconstruct unseen samples
from few seen samples and use the distance between the original
unseen samples and their reconstruction as the criterion for
classification. However, as pointed out in this paper, a bias is
introduced in the overall distribution between the reconstructed
features and original features, which consequently affects the
distance calculation and subsequent classification. To address
this issue, we propose a new concept of Feature Reconstruction
Bias (FRB), which can be computed easily in the training stage
without introducing any new parameters. Moreover, we propose
to use this bias to correct query features in the test stage, which
is shown to increase inter-class distances and decrease intra-
class distances. Experiments on four fine-grained benchmarks
demonstrate the effectiveness of our approach, with state-of-
the-art performance achieved in most scenarios.

I. INTRODUCTION

Image classification is the core problem of computer vision
research, which has broad prospects and extraordinary signifi-
cance in many fields. However, traditional image classification
tasks rely on a large amount of labeled data, which is in stark
contrast with human intelligence which has the ability to learn
from very few examples. Moreover, it can be difficult to ac-
quire sufficient images, and labeling these images can be time-
consuming and even more challenging, sometimes requiring
expert knowledge. This is particularly the case for fine-grained
image classification, whose task is to distinguish images of
the same basic-level category, such as classifying dog images
into breeds and flower images into species. Therefore, the
problem of few-shot fine-grained image classification has
gradually attracted attention, and more and more researchers
have started to investigate how to learn discriminative features
to identify the subtle differences in fine-grained images based
on a small number of labeled samples.

Among existing research on few-shot image classification,
feature-based methods and metric-based methods are the
mainstream. Feature-based methods focus on learning trans-
ferable features from an auxiliary dataset with a large amount
of labeled images [2, 3]. To further improve the discriminabil-
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Fig. 1. (a) is the existing feature map reconstruction network (FRN) [1]. There
exists a bias B between the distribution of query features, represented by
the mean function (the solid diamond), and the distribution of reconstructed
features (represented by the shaded diamond). (b) is the proposed feature
reconstruction bias (FRB) module. The bias B is transferred and used to
correct query features, which consequently reduces the distance between
reconstructed features (shaded triangles) and bias-corrected features (hollow
triangles).

ity for the novel task, features may be further fine-tuned on
few labeled samples [4, 5]. Metric-based methods aim to find
an effective metric space based on the auxiliary dataset with
the goal that samples of the same class, even unseen before,
are close to each other and samples of different classes are
far apart [6, 7]. For fine-grained image classification, one
distinction from traditional image classification is that useful
information for distinguishing between classes may only lie
in a small region of the image and at different positions across
images. Therefore, methods based on local descriptors have
been proposed, which extract and pool together local features
from different parts of the labeled image to serve as the class
representation and classify an unseen image by comparing
it local features against this pool [8, 9]. Building on local
features, Wertheimer et al. [1] recently proposed the feature



map reconstruction network (FRN). One key novelty of FRN
is the idea of reconstructing unseen query features from
seen support features and then using the distance between
original query features and reconstructed query features as
the classification criterion. The reconstruction step, based
on a mathematically elegant formula, introduces only two
parameters and permits a closed-form solution, thereby having
the virtues of computational efficiency and generalizability.

However, despite the aforementioned benefits and empiri-
cally strong performance, we notice from experiments that,
there exists a bias between the distributions of original query
features and the reconstructed features in FRN. This issue
is illustrated in Figure 1(a), where the arrow B indicates
the gap between mean query features (denoted by the solid
diamond) and mean reconstructed features (denoted by the
shaded diamond); here the mean function is used to represent
the overall distribution of features. This bias is a result of in-
sufficient labeled samples and it will be passed to the distance
calculation and affect the subsequent classification. Again,
in Figure 1(a), we see that the query sample Q2 has simi-
lar distances to the correct-class reconstruction, Qrec

2,blue and
incorrect-class reconstruction, Qrec

2,red, implying the difficulty
to classify Q2 correctly. To address this bias, we introduce a
novel concept of Feature Reconstruction Bias (FRB), which
can be computed easily in the training without introducing any
new parameter. Based on this concept, we propose a simple
yet effective remedy to correct query samples. As illustrated in
Figure 1(b), after adding the bias B to the query features Q1

and Q2, the bias-corrected query features Qbc
1 and Qbc

2 locate
closer to their correct-class reconstruction, thus improving the
classification performance.

To summarize, the contribution of our work are three-fold:
• We propose a novel concept called feature reconstruction

bias (FRB), which represents the distributional difference
between the original query features and the reconstructed
query features.

• We propose to transfer the optimal bias learned in the
training stage to query features in the test stage, which
effectively reduces the intra-class distances and results
in better classification performance.

• We verify the effectiveness of the proposed approach on
four fine-grained image classification datasets. Results
show that our method achieves the state-of-the-art per-
formance in most scenarios.

II. RELATED WORK

In recent years, many methods for few-shot image classifi-
cation have been proposed. In this section, we provide a brief
review of metric-based methods and feature learning methods.

A. Metric-Based Few-shot Methods

As an important method to study few-shot learning, the
metric-based method calculates the distance between features
of the samples to be classified and features of labeled samples,

and then determines the class of the samples to be classified
by this distance.

Koch et al. [10] were the first to use Siamese neural
networks for few-shot image classification tasks. The model
maps the input to the target space through an embedding
function and uses a simple distance function to calculate the
similarity between samples. Matching Network [6] introduced
the attention mechanism and memory mechanism LSTM for
one-shot learning for fast learning, and finally used the cosine
similarity for class prediction. Snell et al. [7] proposed the
Prototypical Network, which calculates the distance between
the sample to be classified and the prototype representation
of the support set by the Euclidean distance, and realizes the
classification according to this distance.

The above methods all use a predefined function to cal-
culate the similarity score between samples. In addition,
there are methods using neural networks for measurement.
Relation Network [11] obtains a learnable non-linear simi-
larity measure by training a neural network to compare the
feature vectors extracted by the embedding module. Li et
al. [8] proposed a Deep Nearest Neighbor Neural Network
(DN4), which replaces simple image feature vectors with local
descriptors and finds the class closest to the input image by
comparing the local descriptors between the samples to be
classified and the known samples. The method is particularly
suitable for fine-grained image classification.

B. Feature Learning Methods

Feature learning methods mainly use related information or
auxiliary information of the image to extract more discrimi-
native features.

Oreshkin et al. [12] noticed that in classification task,
there is a strong correlation between multiple classes of the
same task, and adjusted the feature extractor according to the
common features of multiple classes in the task. Gidaris et
al. [13] proposed an approach for improving few-shot learning
through self-supervision. This method combines an additional
self-supervised learning task with a few-shot classification
task, both sharing a feature extraction network, with the
hope that the self-supervised learning task can improve the
representational ability of feature extraction networks. In
order to establish the connection between training and novel
class, Zhu et al. [14] proposed an attribute-guided learning
framework, which in addition to learning general feature
representations can also establish an attribute-guided learning
mechanism, thereby obtaining a more discriminative feature
representations.

In addition to the above works, there are many studies
aiming to improve feature learning by augmenting data or
features. Ji et al. [15] proposed an unsupervised feature
learning method. The method consists of two alternating
processes of progressive clustering and episodic training.
By generating pseudo-labeled training examples and opti-
mizing the feature representation of the data, it obtains a
high-performance few-shot learner. Li et al. [16] proposed
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Fig. 2. Model architecture of the proposed method. Images are converted into embedded features by the embedding module f(·|θ), and the query features
are reconstructed using support features from each class through the feature map reconstruction network (FRN) module. The distribution bias B between the
embedded query features and the reconstructed features is obtained by the feature reconstruction bias (FRB) module and used to correct query features. The
corrected features and reconstructed features are compared in the metric module to generate a prediction score. In the training phase, the bias B is computed
with the optimal one saved as Bopt; the testing phase will use Bopt directly instead of retraining through FRB.

Adversarial Feature Hallucination Networks (AFHN), which
is based on conditional Wasserstein Generative Adversarial
networks (cWGAN) under the condition of a small number
of labeled samples to hallucinate diverse and discriminative
features.

By combining metric-based and feature learning methods
in recent years, various few-shot classification methods have
emerged, bringing many breakthroughs to the few-shot re-
search. However, there are still numerous problems to be
solved.

III. PROPOSED METHOD

In this section, we present our method on identifying and
correcting the bias in the distribution of embedded query
features and reconstructed query features. We will start with
a formulation of few-shot classification, followed by an
overview of the proposed network and a detailed description
of each component.

A. Problem Formulation

Few-shot classification typically involves three datasets: a
support set S = {(xi, yi)}ni=1 (n = C × K), a query set
Q = {(xj , yj)}mj=1 (m = C × M), and an auxiliary set A.
The support and query sets serve as the training and test
sets in the traditional machine learning setting and they share
the same label space. In addition, the support set contains
K labeled images for each of the C classes, and thus few-
shot classification is generally regarded as an C-way K-shot
classification problem (K is a small number, e.g., 1 or 5); the
query set contains N ×M images from the same classes for
testing. Since the support set has very limited labeled images
and training on it can easily cause overfitting, an auxiliary set
with a large number of labeled samples is typically used to

learn transferable knowledge. Note that the label space of the
auxiliary set is disjoint with the support and query sets.

A widely adopted approach to learn transferable knowledge
is through episodic training [6]. Each episode mimics the C-
way K-shot classification task, i.e., randomly selecting K and
M images of C classes from the auxiliary set to form the
support and query sets respectively. Moreover, the auxiliary
set can be further split into training and validation sets with
disjoint label space. Episodes formed from the training set is
used to train the model, and the learned model is evaluated
on episodes formed from the validation set for selecting
hyperparameters. Once the optimal model is selected, it will
be tested on the actual support and query sets to report the
final performance.

B. Architecture Overview
As shown in Figure 2, the proposed method includes four

modules. The first is the feature embedding module f(· | θ),
which extracts features from the input images. Networks such
as a convolutional neural network and a residual network
can be used for this purpose. The second is the feature map
reconstruction network (FRN) module, which reconstructs
query features from support features. The third module is the
feature reconstruction bias (FRB) module, which calculates
the overall distribution bias between reconstructed query
features and embedded query features. In the training phase,
the bias, B, is calculated for each episode and the one which
obtains the optimal performance on the validation set is saved
as Bopt. In the testing phase, the saved optimal bias Bopt
will be added to each query feature, producing bias-corrected
query features. The fourth module is a metric module, which
performs classification by measuring the distance between re-
constructed query features and bias-corrected query features.



C. Feature Map Reconstruction Network (FRN) Module

The FRN module module mainly adopts the existing feature
map reconstruction networks [1].

The input to the FRN module is the features extracted
by the feature embedding module. Given an image xi, the
feature embedding module extracts features and outputs x̂i =
f(xi|θ) ∈ Rd×h×w, where d denotes the number of channels,
and h and w denote the height and width of feature maps
respectively.

The FRN module first reshapes the features into r
(r = h × w) d-dimensional local descriptors, i.e., x̂i =
[x̂i,(1), . . . , x̂i,(r)], and pools together local descriptors of the
same class to represent a class. In other words, for a C-
way K-shot classification task, each class c is represented
by a single matrix Sc ∈ RKr×d. Similarly, a query image is
transformed into a matrix Q ∈ Rr×d.

Next, the FRN module reconstructs the query feature from
the support features by utilizing ridge regression. According
to the following two formulae, we can reconstruct query
features Qi using support features from class c (details can
be found in [1]):

Qrec
c,i = ρQiS

T
c

(
ScS

T
c + λI

)−1
Sc (1)

Qrec
c,i = ρQ

(
ST
c Sc + λI

)−1
ST
c Sc, (2)

where ρ and λ are learnable parameters. Meanwhile, in
order to ensure their non-negative properties, ρ and λ are
represented as follows:

λ =
Kr

d
eα (3)

ρ = eβ , (4)

where α and β are learnable hyperparameters with an initial
value of zero. When d > Kr, it is recommended to use Eq. (3)
to calculate the reconstructed feature for computational effi-
ciency; otherwise, Eq. (4) is recommended.

Once the query features are reconstructed, they are re-
shaped back to a tensor with the same shape as before, i.e.,
a tensor of size h×w× d. These reconstructed features will
be used in the FRB module and the metric module.

D. Feature Reconstruction Bias (FRB) Module

As discussed in the introduction and shown in Figure 1,
there exists a bias between the distribution of reconstructed
query features and the distribution of the embedded query
features. Such bias will be brought forward in the calculation
of the Euclidean distance between the embedded query fea-
tures and class-wise reconstructed features, which is then used
to make predictions. Therefore, to overcome the influence of
this bias, we propose the FRB module which aims to learn
the bias from training episodes and use the learned bias to
correct embedded query features in the testing phase.

To represent the feature distribution, we follow the proto-
typical network [7] and compute the first-order statistic. In

other words, we define the bias between the distribution of
reconstructed query features and embedded query features to
be the difference between their mean functions:

B = Q̄rec − Q̄

=
1

Cm

C∑
c=1

m∑
i=1

Qrec
c,i −

1

Cm

C∑
c=1

m∑
i=1

Qc,i

(5)

After computing the bias, it is added directly to the original
query features to generate bias-corrected query features:

Qbc
i = Qi +B (6)

In the training phase, the bias B is calculated using the
reconstructed and embedded query features from the current
task as in Eq. (5). Meanwhile, we evaluate the current model
performance on the validation set so as to save the bias
that generates the highest validation accuracy; this optimal
bias is denoted by Bopt. During the testing phase, instead
of recalculating B, we add this optimal bias to the embedded
query features, i.e., replacing B by Bopt in Eq. (6). The reason
is that, in reality, we may not have the query images available
all at once and thus cannot calculate Eq. (5).

The final classification is performed based on the squared
Euclidean distance between the reconstructed query features
and bias-corrected query features:

dc,i = ∥Qrec
c,i −Qbc

i ∥2 (7)

Applying the softmax function to the above distance, the final
predicted probability is obtained as follows:

P (yi = c | xi) =
exp (−τdc,i)∑

c′∈C exp (−τdc′,i)
, (8)

where τ is a learnable temperature hyperparameter.
We train the model by minimizing the cross-entropy loss:

L = − 1

m

m∑
i=1

(
yT
i log (pi)

)
, (9)

where yi denotes the one-hot vector and pi denotes the vector
of predicted probability.

IV. EXPERIMENTS

A. Datasets and Preprocessing

To test the effectiveness of the proposed method,
we use four benchmark fine-grained datasets: CUB-200-
2011, Stanford-Cars, Stanford-Dogs and Oxford 102 Flower
Dataset. A brief description of the datasets is given as follows:
CUB-200-2011 dataset (CUB) [26]: a widely-used fine-
grained dataset for bird classification. Number of categories:
200; number of images: 11788; annotations per image: 15
part locations, 312 binary attributes, 1 bounding box. The
size of images in CUB ranges from about 200×200 to about
500×500 pixels.
Stanford-Cars dataset (Cars) [27]: a car image dataset,



TABLE I
RESULTS OF 5-WAY 1-SHOT AND 5-WAY 5-SHOT CLASSIFICATION WITH THE CONV-4 BACKBONE ON THE CUB, DOGS, CARS, AND FLOWERS DATA.

MEAN ACCURACY AND 95% CONFIDENCE INTERVALS COMPUTED OVER 10,000 TASKS ARE REPORTED. THE BEST (SECOND-BEST, RESP.) METHOD IS
HIGHLIGHTED IN BOLD (UNDERLINED, RESP.). METHODS LABELED BY † DENOTE OUR IMPLEMENTATIONS.

Method
CUB Dogs Cars Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet(NerulPS ’16) [6]† 60.06±0.88 74.57±0.73 46.10±0.86 59.79±0.72 44.73±0.77 64.74±0.72 71.89±0.90 85.46±0.59

ProtoNet(NerulPS ’17) [7]† 63.64±0.23 84.23±0.15 45.12±0.21 69.16±0.16 48.42±0.22 71.38±0.18 64.23±0.23 84.97±0.16

RelationNet(CVPR ’19) [11]† 63.94±0.92 77.87±0.64 47.35±0.88 66.20±0.74 46.04±0.91 68.52±0.78 69.50±0.96 83.91±0.63

DN4(CVPR ’19) [8] 57.45±0.89 84.41±0.58 39.08±0.76 69.81±0.69 34.12±0.68 87.47±0.47 71.15±0.94 88.86±0.56

Baseline++(CVPR ’19) [17]† 62.36±0.84 79.08±0.61 44.49±0.70 64.48±0.66 46.82±0.76 68.20±0.72 70.54±0.84 86.63±0.58

DeepEMD(CVPR ’20) [18] 64.08±0.50 80.55±0.71 46.73±0.49 65.74±0.63 61.63±0.27 72.95±0.38 - -

DSN(CVPR ’20) [19]† 71.57±0.92 83.51±0.60 44.33±0.81 60.04±0.68 48.16±0.86 60.77±0.75 67.71±0.92 84.58±0.70

LRPABN(TMM ’21) [9] 63.63±0.77 76.06±0.58 45.72±0.75 60.94±0.66 60.28±0.76 73.29±0.58 - -

TOAN(TCSVT ’21) [20] 65.34±0.75 80.43±0.60 49.30±0.77 67.16±0.49 65.90±0.72 84.24±0.48 - -

BSNet(TIP ’21) [21]† 62.84±0.95 85.39±0.56 43.42±0.89 71.90±0.68 40.89±0.77 86.88±0.50 72.79±0.91 84.93±0.64

FRN(CVPR ’21) [1]† 73.63±0.21 88.50±0.13 58.23±0.22 76.50±0.17 64.42±0.22 84.17±0.13 73.61±0.22 88.93±0.14

MixFSL(ICCV ’21) [22]† 53.61±0.88 73.24±0.75 43.96±0.77 64.43±0.68 44.56±0.80 59.63±0.79 68.01±0.90 85.10±0.62

DLG(IJMLC ’22) [23] 64.77±0.90 83.31±0.55 47.77±0.86 67.07±0.72 62.56±0.82 88.98±0.47 - -

Ours 73.80±0.21 88.21±0.13 58.40±0.22 76.86±0.15 65.00±0.22 84.17±0.13 74.49±0.23 89.59±0.13

TABLE II
RESULTS OF 5-WAY 1-SHOT AND 5-WAY 5-SHOT CLASSIFICATION WITH THE RESNET-12 BACKBONE ON THE CUB, DOGS, CARS, AND FLOWERS
DATA. MEAN ACCURACY AND 95% CONFIDENCE INTERVALS COMPUTED OVER 10,000 TASKS ARE REPORTED. THE BEST (SECOND-BEST, RESP.)

METHOD IS HIGHLIGHTED IN BOLD (UNDERLINED, RESP.). METHODS LABELED BY † DENOTE OUR IMPLEMENTATIONS.

Method
CUB Dogs Cars Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet(NerulPS ’17) [7]† 79.64±0.20 91.15±0.11 72.85±0.22 86.54±0.13 82.29±0.20 93.11±0.10 75.41±0.22 89.46±0.14

DeepEMD(CVPR ’20) [18]† 71.11±0.31 86.30±0.19 67.59±0.30 81.13±0.20 73.30±0.29 88.37±0.17 70.00±0.35 83.63±0.26

RENet(ICCV ’21) [24]† 79.49±0.44 91.11±0.24 71.69±0.47 85.60±0.30 79.66±0.44 91.95±0.22 79.91±0.42 92.33±0.22

MixFSL(ICCV ’21) [22]† 67.86±0.94 82.12±0.66 67.26±0.90 82.05±0.56 58.15±0.87 80.54±0.63 72.60±0.91 86.52±0.65

FRN(CVPR ’21) [1]† 83.16±0.19 92.59±0.11 76.49±0.21 88.22±0.12 86.48±0.18 94.78±0.08 81.07±0.20 92.52±0.11

VFD(CVPR ’21) [25] 79.12±0.83 91.48±0.39 76.24±0.87 88.00±0.47 - - - -

Ours 83.06±0.19 92.92±0.10 76.55±0.21 88.27±0.12 86.94±0.18 95.59±0.07 82.77±0.19 93.96±0.10

which is also widely used for fine-grained classification. Num-
ber of categories: 196, number of images: 16185, containing
make, model and year information.
Stanford-Dogs dataset (Dogs) [28]: is a dataset of dog
images, which was originally collected for fine-grained image
classification. Number of categories: 120, number of pictures:
20580. This dataset is an image of 120 species of dogs
from around the world, built using ImageNet images and
annotations.
Oxford 102 Flower Dataset (Flowers) [29]: a dataset of
flower images. Number of categories: 102, number of pic-
tures: 8189. Each flower consists of 40 to 258 images, and
these flowers are dominated by common British flowers.

For all datasets, images are resized to a widely used size:
84×84.

B. Implementation Details

Following best practices in few-shot classification, we
adopt both conv4 and ResNet-12 backbone for our experi-
ments. All experiments are implemented by using Pytorch on
one NVIDIA RTX 3090 GPU.

Conv-4 consists of four convolution blocks with each
block composed of 3×3 convolutions with 64 channels, batch
normalization, a ReLU nonlinearity, and 2×2 max-pooling.
The shape of the output feature maps for input images
with size 84×84 is 64×5×5. ResNet-12 consists of four
residual blocks. Each residual block is composed of three
convolutional layers. The shape of output feature map is
640×5×5 for input images with a size of 84×84.

We perform experiments on the standard 5-way 1-shot and
5-way 5-shot setups on four datasets [26–29]. Finally, we



TABLE III
ABLATION STUDIES ON THE CONSTRUCTION OF THE OPTIMAL BIAS,
BOPT – LEARNED VIA META-LEARNING vs SELECTED FROM THE BEST

MODEL. 5-WAY 1-SHOT AND 5-SHOT CLASSIFICATION ARE PERFORMED
ON CUB, DOGS, AND FLOWERS WITH THE RESNET-12 BACKBONE.

Method
CUB Dogs Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

meta-learned 80.57 90.86 73.74 86.45 77.93 90.97

best model 83.06 92.92 76.55 88.27 82.77 93.96

report the mean accuracy and the 95% confidence intervals
computed over 10,000 randomly selected tasks.

In our experiments, we also used standard data enhance-
ments to augment labeled data to alleviate the overfitting
problem of the model [1, 11].

C. Experimental Results

In this section, we compare the proposed method with 15
few-shot classification and fine-grained few-shot methods on
5-way 1-shot and 5-way 5-shot tasks. Results with Conv-4 as
the backbone network are listed in Table I, and results with the
ResNet-12 backbone are listed in Table II. Some methods are
not evaluated on Flowers and Dogs datasets in their original
papers and thus their results are missing in our tables.

With the Conv-4 backbone, we first observe that the
proposed method performs better than the baseline method
FRN in all cases except 5-way 5-shot on CUB, indicating
the importance of correcting the distribution bias. Secondly,
the proposed method outperforms other methods on Dogs
and Flowers datasets in both 5-way 1-shot and 5-way 5-
shot settings. On CUB, it performs the best on the 1-shot
task and is very close to the optimal method on the 5-shot
task. On Cars, our method is competitive on the 1-shot task
and slightly worse on the 5-shot task. Overall, the method
achieves the best or second-best performance in almost all
cases, demonstrating its efficacy.

With the ResNet-12 backbone, our method achieves the
state-of-the-art performance in both 5-way 1-shot and 5-
way 5-shot settings on Dogs, Cars, and Flowers datasets.
This advantage is particularly evident on the Flowers dataset,
where the accuracy of our method is 1.69% higher than the
runner-up FRN. On the CUB dataset, it achieves the highest
accuracy in the 1-shot setting and is slightly worse than FRN
in the 5-shot setting, but the gap between is very small. Again,
these results verify the effectiveness of the proposed method.

D. Ablation Studies

One important component in our method is the construction
of the optimal bias, Bopt. Currently, we use a simple approach
of selecting the bias B from episode that achieves the
highest validation accuracy. An alternative approach would be
parameterizing B and then meta-learning these parameters on
training episodes. These two strategies are compared and the
result is shown in Table III. We see that the approach of using
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Fig. 3. Visualization of probability scores of FRN and the proposed method
(ours) on Flowers dataset. Bars in the diagonal (off-diagonal, resp.) matrices
indicate the probability of classifying into the correct (incorrect, resp.) class.

the bias from the best model achieves higher classification
accuracy in all cases, favoring a simple approach with no
parameter introduced.

E. Visualization Analysis

Figure 3 provides the visualization of the probability score
for FRN and the proposed method under the experimental
settings of the 5-way 1-shot and 5-way 5-shot on the Flowers
dataset. We randomly sample 15 query samples in the testing
phase, calculate the probability score according to Eq. 8, and
then display these scores in the confusion matrix. Each bar
in the diagonal matrices denotes the probability of classifying
a query image into the correct class and the one in the off-
diagonal matrices denotes the probability of classifying into
the wrong class; warmer color indicates a higher probability
score. As we can see from the figure, with the proposed
method, query images are classified into the correct class
with higher probability. Recalling Eq. (8), this means that the
distances between reconstructed and original query features
are smaller in our method than FRN.

V. CONCLUSION
In this paper, we introduce a new concept to character-

ize the distributional bias in reconstruction-based methods.
We also propose a simple approach to learn and save the
optimal bias in the training phase and use it correct query
features in the test phase. The resulting model can reach
an advanced level with extensive experiments show that
the proposed method performs competitively or outperforms
existing few-shot classification methods on four fine-grained
image datasets.
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