92 research outputs found

    Experimental and Numerical Evaluation of the Ablation Process of Carbon/Carbon Composites Using High Velocity Oxygen Fuel System

    Get PDF
    The ablation process of carbon/carbon (C/C) composites was tested under hypersonic flowing propane flame. The microstructures of C/C composites were characterized and the numerical analysis was performed. Two typical ablation morphologies of the carbon fibers, which are drum-like and needle-like shapes, were observed depending on the alignments of fibers to the flame directions. Temperature fields in the composites were analyzed using finite element method, and the mechanisms that govern the formation of different ablation behaviors were elucidated. For paralleled fiber bundles, the highest temperature situates in the middle parts underlying the ablation pits, where the drum-like shape is formed. For perpendicular fiber bundles, the highest temperature appears at the turning point between the transverse section and the surface of fiber, which leads to the gradual ablation from the fiber surface toward the axis, and eventually the formation of the needle-like shape

    Super-tetragonal Sr4Al2O7: a versatile sacrificial layer for high-integrity freestanding oxide membranes

    Full text link
    Releasing the epitaxial oxide heterostructures from substrate constraints leads to the emergence of various correlated electronic phases and paves the way for integrations with advanced semiconductor technologies. Identifying a suitable water-soluble sacrificial layer, compatible with the high-quality epitaxial growth of oxide heterostructures, is currently the key to the development of large-scale freestanding oxide membranes. In this study, we unveil the super-tetragonal Sr4Al2O7 (SAOT) as a promising water-soluble sacrificial layer. The distinct low-symmetric crystal structure of SAOT enables a superior capability to sustain epitaxial strain, thus allowing for broad tunability in lattice constants. The resultant structural coherency and defect-free interface in perovskite ABO3/SAOT heterostructures effectively restrain crack formations during the water-assisted release of freestanding oxide membranes. For a variety of non-ferroelectric oxide membranes, the crack-free areas can span up to a few millimeters in length scale. These compelling features, combined with the inherent high-water solubility, make SAOT a versatile and feasible sacrificial layer for producing high-quality freestanding oxide membranes, thereby boosting their potential for innovative oxide electronics and flexible device designs.Comment: 5 figures and SI, it is the second version of this manuscrip

    A Novel Biochemical Route for Fuels and Chemicals Production from Cellulosic Biomass

    Get PDF
    The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate—glucose and gluconate—can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route

    Finite time adaptive synchronous control for fractional‐order chaotic power systems

    No full text
    Abstract As a complex non‐linear system, the chaotic oscillation of power system seriously threatens the safe and stable operation of power grids. In this paper, a finite time adaptive synchronization control method is proposed to mitigate the problem of chaotic oscillation in the power system. The proposed method can realize chaos control and parameter identification by completely synchronizing the fractional‐order chaotic power system with the stable fractional‐order power system to identify parameters within a finite time. The fractional Lyapunov stability theory is used for numerical simulation. Theoretical and simulation results show that this method can effectively stabilize the system in a finite time. It is proved that compared with the adaptive synchronous control method, the control method is simpler in design, shorter in action time, and more meaningful in engineering practice

    Improvement of Noise and Gain Characteristics of Low-Repetition-Rate Double-Pass Fiber Amplifiers

    No full text

    Suppression of Frequency Modulation to Amplitude Modulation Conversion with Modified Group Velocity Dispersion Compensation Device in the Front End of High-Power Lasers

    No full text
    The group velocity dispersion (GVD) occurring in the front end of high-power lasers is one of the primary factors leading to the conversion of frequency modulation (FM) to amplitude modulation (AM). In this paper, we propose a modified, active, closed-loop feedback compensation device for GVD-induced FM–AM conversion, using a two-dimensional, electric, adjustable mirror mount and parallel grating pair to improve the long-term stability, efficiency of adjustment, and accuracy of compensation. Experimental results of a 12 h FM–AM depth test revealed that the depth varied between 2.28% and 5.22%. Moreover, we formulated a mathematical relationship between the dispersion parameters and temperature in optical fibers to analyze the intrinsic effect of temperature on FM–AM. The related simulation and experimental results consistently validated the quantitative relationship between the temperature and FM–AM depth

    Suppression of Frequency Modulation to Amplitude Modulation Conversion with Modified Group Velocity Dispersion Compensation Device in the Front End of High-Power Lasers

    No full text
    The group velocity dispersion (GVD) occurring in the front end of high-power lasers is one of the primary factors leading to the conversion of frequency modulation (FM) to amplitude modulation (AM). In this paper, we propose a modified, active, closed-loop feedback compensation device for GVD-induced FM–AM conversion, using a two-dimensional, electric, adjustable mirror mount and parallel grating pair to improve the long-term stability, efficiency of adjustment, and accuracy of compensation. Experimental results of a 12 h FM–AM depth test revealed that the depth varied between 2.28% and 5.22%. Moreover, we formulated a mathematical relationship between the dispersion parameters and temperature in optical fibers to analyze the intrinsic effect of temperature on FM–AM. The related simulation and experimental results consistently validated the quantitative relationship between the temperature and FM–AM depth
    • …
    corecore