74 research outputs found

    A Decision Tree Approach for Assessing and Mitigating Background and Identity Disclosure Risks

    Get PDF
    The Facebook/Cambridge Analytica data scandal shows a type of privacy threat where an adversary attacks on a massive number of people without prior knowledge about their background information. Existing studies typically assume that the adversary knew the background information of the target individuals. This study examines the disclosure risk issue in privacy breaches without such an assumption. We define the background disclosure risk and re-identification risk based on the notion of prior and conditional probabilities respectively, and integrate the two risk measures into a composite measure using the Minimum Description Length principle. We then develop a decision-tree pruning algorithm to find an appropriate group size considering the tradeoff between disclosure risk and data utility. Furthermore, we propose a novel tiered generalization method for anonymizing data at the group level. An experimental study has been conducted to demonstrate the effectiveness of our approach

    Extreme suppression of antiferromagnetic order and critical scaling in a two-dimensional random quantum magnet

    Full text link
    Sr_2CuTeO_6 is a square-lattice Néel antiferromagnet with superexchange between first-neighbor S=1/2 Cu spins mediated by plaquette centered Te ions. Substituting Te by W, the affected impurity plaquettes have predominantly second-neighbor interactions, thus causing local magnetic frustration. Here we report a study of Sr_2CuTe_1-xW_xO_6 using neutron diffraction and μSR techniques, showing that the Néel order vanishes already at x=0.025±0.005. We explain this extreme order suppression using a two-dimensional Heisenberg spin model, demonstrating that a W-type impurity induces a deformation of the order parameter that decays with distance as 1/r^2 at temperature T=0. The associated logarithmic singularity leads to loss of order for any x>0. Order for small x>0 and T>0 is induced by weak interplane couplings. In the nonmagnetic phase of Sr_2CuTe_1-x W_x O_6, the μSR relaxation rate exhibits quantum critical scaling with a large dynamic exponent, z≈3, consistent with a random-singlet state.Accepted manuscrip

    A Two-LED Based Indoor Three-Dimensional Visible Light Positioning and Orienteering Scheme for a Tilted Receiver

    No full text
    Conventional visible light positioning (VLP) systems usually require at least three light-emitting diodes (LEDs) to enable trilateration or triangulation, which is infeasible when the LED condition is constrained. In this paper, we propose a novel indoor three-dimensional (3D) VLP and orienteering (VLPO) scheme. By using only two LEDs and two photo-detectors (PDs), our scheme can achieve simultaneous 3D localization and receiver orientation estimation efficiently. Further, to eliminate the location uncertainty caused by receiver tilt, we propose a location selection strategy which can effectively determine the true location of the receiver. Through extensive simulations, it is found that when the receiver faces upwards, the proposed scheme can achieve a mean 3D positioning error of 7.4 cm and a mean azimuthal error of 7.0°. Moreover, when the receiver tilts with a polar angle of 10°, accurate VLPO can still be achieved with 90.3% of 3D positioning errors less than 20 cm and 92.6% of azimuthal errors less than 5°. These results indicate that our scheme is a promising solution to achieve accurate VLPO when there is only two LEDs. Results also verify the effectiveness of the VLPO scheme when locating a tilted receiver

    A Novel Complex-Valued Blind Source Separation and Its Applications in Integrated Reception

    No full text
    The separation of time–frequency mixing signals composed of radar, communication, and jamming is the first step in integrated reception processing, which requires higher accuracy for complex blind source separation (CVBSS). However, traditional CVBSS methods have limitations such as low separation accuracy, a slow convergence speed, and poor robustness in low signal-to-noise ratio (SNR) and high jamming-to-signal ratio (JSR) scenarios. To address the above issues, this paper firstly establishes a time delay mixing mathematical model. A robust whitening algorithm is proposed by using the time delay correlation matrix of the observed signal, which is insensitive to noise. Secondly, the joint diagonalized F-parametrization is used as the objective function, and the separation matrix is constructed based on the multiple complex-valued Givens matrices. The complex-valued Givens matrix not only ensures orthogonality in the separation matrix but also effectively reduces the number of parameters to be calculated. This approach guarantees accuracy and simplifies the complexity of the separation process. Finally, the nonlinear chaotic grey wolf optimizer is utilized to search for the optimal rotation angle. The simulation results demonstrate that this algorithm offers higher separation accuracy and requires fewer iterations compared to the traditional algorithm. Additionally, it enhances the accuracy of direction of arrival (DOA) estimation, reduces the communication bit error rate, and enables the joint estimation of the target distance and velocity even in the presence of powerful jamming and a low SNR

    Interspecific chloroplast genome sequence diversity and genomic resources in Diospyros

    No full text
    Abstract Background Fruits of persimmon plants are traditional healthy food in China, Korea and Japan. However, due to the shortage of morphological and DNA markers, the development of persimmon industry has been heavily inhibited. Results Chloroplast genomes of Diospyros cathayensis, D. virginiana, D. rhombifolia and D. deyangensis were newly sequenced. Comparative analyses of ten chloroplast genomes including six previously published chloroplast genomes of Diospyros provided new insights into the genome sequence diversity and genomic resources of the genus. Eight hyper-variable regions, trnH-psbA, rps16-trnQ, rpoB-trnC, rps4-trnT-trnL, ndhF, ndhF-rpl32-trnL, ycf1a, and ycf1b, were discovered and can be used as chloroplast DNA markers at/above species levels. The complete chloroplast genome sequences provided the best resolution at inter-specific level in comparison with different chloroplast DNA sequence datasets. Conclusion Diospyros oleifera, D. deyangensis, D. virginiana, D. glaucifolia, D. lotus and D. jinzaoshi are important wild species closely related to the cultivated persimmon D. kaki. The hyper-variable regions can be used as DNA markers for global genetic diversity detection of Diospyros. Deeper study on these taxa would be helpful for elucidating the origin of D. kaki

    Learning Multi-Instance Deep Ranking and Regression Network for Visual House Appraisal

    No full text

    The Effect of MCM3AP-AS1/miR-211/KLF5/AGGF1 Axis Regulating Glioblastoma Angiogenesis

    No full text
    Glioblastoma (GBM) is the most aggressive and malignant primary tumor. Angiogenesis plays a critical role in the progression of GBM. Previous studies have indicated that long non-coding RNAs (lncRNAs) are abnormally expressed in various cancers and participate in the regulation of the malignant behaviors of tumors. The present study demonstrated that lncRNA antisense 1 to Micro-chromosome maintenance protein 3-associated protein (MCM3AP-AS1) was upregulated whereas miR-211 was downregulated in glioma-associated endothelial cells (GECs). Knockdown of MCM3AP-AS1 suppressed the cell viability, migration, and tube formation of GECs and played a role in inhibiting angiogenesis of GBM in vitro. Furthermore, knockdown of MCM3AP-AS1 increased the expression of miR-211. Luciferase reporter assay implicated that miR-211 targeted KLF5 3′-UTR and consequently inhibited KLF5 expression. Besides, in this study we found that MCM3AP-AS1 knockdown decreased KLF5 and AGGF1 expression by upregulating miR-211. In addition, KLF5 was associated with the promoter region of AGGF1. Knockdown of KLF5 decreased AGGF1 expression by transcriptional repression, and also inhibited the activation of PI3K/AKT and ERK1/2 signaling pathways. Overall, this study reveals that MCM3AP-AS1/miR-211/KLF5/AGGF1 axis plays a prominent role in the regulation of GBM angiogenesis and also serves as new therapeutic target for the anti-angiogenic therapy of glioma

    Image label completion by pursuing contextual decomposability

    No full text
    10.1145/2168996.2169001ACM Transactions on Multimedia Computing, Communications and Applications8
    corecore