2,664 research outputs found

    Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS

    The solutions of classical and nonlocal nonlinear Schr\"{o}dinger equations with nonzero backgrounds: Bilinearisation and reduction approach

    Full text link
    In this paper we develop a bilinearisation-reduction approach to derive solutions to the classical and nonlocal nonlinear Schr\"{o}dinger (NLS) equations with nonzero backgrounds. We start from the second order Ablowitz-Kaup-Newell-Segur coupled equations as an unreduced system. With a pair of solutions (q0,r0)(q_0,r_0) we bilinearize the unreduced system and obtain solutions in terms of quasi double Wronskians. Then we implement reductions by introducing constraints on the column vectors of the Wronskians and finally obtain solutions to the reduced equations, including the classical NLS equation and the nonlocal NLS equations with reverse-space, reverse-time and reverse-space-time, respectively. With a set of plane wave solution (q0,r0)(q_0,r_0) as a background solution, we present explicit formulae for these column vectors. As examples, we analyze and illustrate solutions to the focusing NLS equation and the reverse-space nonlocal NLS equation. In particular, we present formulae for the rouge waves of arbitrary order for the focusing NLS equation.Comment: 44 pages, 11 figure

    X-Ray Repair Cross Complementing 4 (XRCC4) Genetic Single Nucleotide Polymorphisms and the Liver Toxicity of AFB1 in Hepatocellular Carcinoma

    Get PDF
    Our previous reports have shown that the genetic single-nucleotide polymorphisms (GSNPs) in the DNA repair gene X-ray repair cross complementing 4 (XRCC4) are involved in the carcinogenesis of hepatocellular carcinoma (HCC) induced by aflatoxin B1 (AFB1). However, the effects of GSNPs in the coding regions of XRCC4 on hepatic toxicity of AFB1 have been less investigated. We conducted a hospital-based clinic tissue samples with pathologically diagnosed HCC (n = 380) in a high AFB1 exposure area to explore the possible roles of GSNPs in the coding regions of XRCC4 in AFB1-induced HCC using liver toxicity assays. A total of 143 GSNPs were included in the present study and genotyped using the SNaPshot method, whereas the liver toxicity of AFB1 was evaluated using AFB1-DNA adducts in the tissues with HCC. In the clinicopathological samples with HCC, the average adduct amount is 2.27 ± 1.09 μmol/mol DNA. Among 143 GSNPs of XRCC4, only rs1237462915, rs28383151, rs762419679, rs766287987, and rs3734091 significantly increased the levels of AFB1-DNA adducts. Furthermore, XRCC4 GSNPs (including rs28383151, rs766287987, and rs3734091) also increased cumulative hazard for patients with HCC. These results suggest that the liver toxicity of AFB1 may be modified by XRCC4 GSNPs
    • …
    corecore