2,172 research outputs found

    Study of an Energetic-oxidant Co-crystal: Preparation, Characterisation, and Crystallisation Mechanism

    Get PDF
    An energetic co-crystal consisting of the most promising military explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and the most well-known oxidant applied in propellants ammonium perchlorate has been prepared with a simple solvent evaporation method. Scanning electron microscopy revealed that the morphology of co-crystal differs greatly from each component. The X-ray diffraction spectrum, FTIR, Raman spectra, and differential scanning calorimetry characterisation further prove the formation of the co-crystal. The result of determination of hygroscopic rate indicated the hygroscopicity was effectively reduced. At last, the crystallisation mechanism has been discussed

    Observation of quantum fingerprinting beating the classical limit

    Get PDF
    Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the information transmitted over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report an experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultra-low noise superconducting single-photon detectors and a stable fibre-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fibre for input sizes of up to two Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics.Comment: 19 pages, 4 figure

    Additive engineering for Sb 2 S 3 indoor photovoltaics with efficiency exceeding 17%

    Get PDF
    Indoor photovoltaics (IPVs) have attracted increasing attention for sustainably powering Internet of Things (IoT) electronics. Sb2S3 is a promising IPV candidate material with a bandgap of ~1.75 eV, which is near the optimal value for indoor energy harvesting. However, the performance of Sb2S3 solar cells is limited by nonradiative recombination, which is dependent on the quality of the absorber films. Additive engineering is an effective strategy to fine tune the properties of solution-processed films. This work shows that the addition of monoethanolamine (MEA) into the precursor solution allows the nucleation and growth of Sb2S3 films to be controlled, enabling the deposition of high-quality Sb2S3 absorbers with reduced grain boundary density, optimized band positions, and increased carrier concentration. Complemented with computations, it is revealed that the incorporation of MEA leads to a more efficient and energetically favorable deposition for enhanced heterogeneous nucleation on the substrate, which increases the grain size and accelerates the deposition rate of Sb2S3 films. Due to suppressed carrier recombination and improved charge-carrier transport in Sb2S3 absorber films, the MEA-modulated Sb2S3 solar cell yields a power conversion efficiency (PCE) of 7.22% under AM1.5 G illumination, and an IPV PCE of 17.55% under 1000 lux white light emitting diode (WLED) illumination, which is the highest yet reported for Sb2S3 IPVs. Furthermore, we construct high performance large-area Sb2S3 IPV minimodules to power IoT wireless sensors, and realize the long-term continuous recording of environmental parameters under WLED illumination in an office. This work highlights the great prospect of Sb2S3 photovoltaics for indoor energy harvesting

    Measurement-device-independent quantum key distribution over untrustful metropolitan network

    Full text link
    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200 square kilometers metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate ten times larger than previous result. Our results demonstrate that the MDIQKD network, combining the best of both worlds --- security and practicality, constitutes an appealing solution to secure metropolitan communications.Comment: 17 pages, 4 figure

    Experimental measurement-device-independent quantum digital signatures over a metropolitan network

    Get PDF
    Quantum digital signatures (QDS) provide a means for signing electronic communications with informationtheoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here, we exploit a measurement-device-independent (MDI) quantum network, over a 200-square-kilometer metropolitan area, to perform a field test of a three-party measurement-device-independent quantum digital signature (MDI-QDS) scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 1E-7. Remarkably, our work demonstrates the feasibility of MDI-QDS for practical applications.Comment: 5 pages, 1 figure, 2 tables, supplemental materials included as ancillary fil

    Dihydromyricetin Attenuates Streptozotocin-induced Liver Injury and Inflammation in Rats via Regulation of NF-κB and AMPK Signaling Pathway

    Get PDF
    open access articleDihydromyricetin (DHM) dramatically improved the quality of life for Streptozotocin (STZ)-induced diabetic rats and significantly increased the activity of antioxidant enzymes in the liver. Moreover, DHM successfully ameliorated diabetes-induced liver damage by suppression of apoptosis in the liver, as indicated by the decreased levels of Bax and cleaved caspase-3. In diabetic rats, the levels of tumor necrosis factor-α and interleukin-1β in the liver were significantly increased. However, the administration of DHM (100–400 mg/kg/day) for 6 weeks restored the cytokine levels to their normal values in a dose-dependent manner in diabetic rats by the regulation of nuclear factor-kappa B signaling pathway. In addition, DHM significantly induced 5' AMP-activated protein kinase (AMPK) phosphorylation and decreased MyD88, TLR4, p38, GSK-3β protein expression levels in the liver of diabetic rats. In conclusion, DHM could improve STZ-induced liver impairment by preventing oxidative stress, apoptosis, and inflammation
    • …
    corecore