7,120 research outputs found

    Quantification of the influence of drugs on zebrafish larvae swimming kinematics and energetics

    Get PDF
    The use of zebrafish larvae has aroused wide interest in the medical field for its potential role in the development of new therapies. The larvae grow extremely quickly and the embryos are nearly transparent which allows easy examination of its internal structures using fluorescent imaging techniques. Medical treatment of zebrafish larvae can directly influence its swimming behaviours. These behaviour changes are related to functional changes of central nervous system and transformations of the zebrafish body such as muscle mechanical power and force variation, which cannot be measured directly by pure experiment observation. To quantify the influence of drugs on zebrafish larvae swimming behaviours and energetics, we have developed a novel methodology to exploit intravital changes based on observed zebrafish locomotion. Specifically, by using an in-house MATLAB code to process the recorded live zebrafish swimming video, the kinematic locomotion equation of a 3D zebrafish larvae was obtained, and a customised Computational Fluid Dynamics tool was used to solve the fluid flow around the fish model which was geometrically the same as experimentally tested zebrafish. The developed methodology was firstly verified against experiment, and further applied to quantify the fish internal body force, torque and power consumption associated with a group of normal zebrafish larvae vs. those immersed in acetic acid and two neuroactive drugs. As indicated by our results, zebrafish larvae immersed in 0.01% acetic acid display approximately 30% higher hydrodynamic power and 10% higher cost of transport than control group. In addition, 500 μM diphenylhydantoin significantly decreases the locomotion activity for approximately 50% lower hydrodynamic power, whereas 100 mg/L yohimbine has not caused any significant influences on 5 dpf zebrafish larvae locomotion. The approach has potential to evaluate the influence of drugs on the aquatic animal’s behaviour changes and thus support the development of new analgesic and neuroactive drugs

    Epidemiology and risk factors of candidemia due to Candida parapsilosis in an intensive care unit

    Get PDF
    We analyzed the clinical features and risk factors of candidemia due to C. parapsilosis (n=104) in the intensive care unit of a tertiary hospital over six years. This was a monocentric, retrospective study of candidemia, conducted from January 2013 to March 2019. Epidemiological characteristics, clinical features, invasive procedures, laboratory data and outcomes of 267 patients with candidemia were analyzed to determine risk factors of candidemia due to C. parapsilosis. Sixty-three cases of C. albicans and 204 cases of non-C. albicans Candida (NCAC) species were included, the latter was composed of 104 cases of C. parapsilosis and 100 cases of non-C. albicans species (46 cases of C. tropicalis, 22 cases of C. glabrata, 23 cases of C. guilliermondii, 5 cases of C. krusei and 4 cases of C. lusitaniae), suggesting that C. parapsilosis was the predominant Candida species isolated from cases of candidemia. A binary multivariate logistic regression analysis showed that APACHE II scores, central venous catheterization and the use of broad-spectrum antibiotics were closely related to C. parapsilosis candidemia, with OR values of 1.159, 3.913 and 2.217, respectively. In conclusion, we found that C. parapsilosis was the main pathogen among the NCAC candidemia in the ICU patients. APACHE II scores, central venous catheterization and the use of broad-spectrum antibiotics were independent risk factors for the occurrence of C. parapsilosis candidemia, which may provide data to support the early introduction of anti-fungal therapy
    • …
    corecore