709 research outputs found

    Memory-Efficient Topic Modeling

    Full text link
    As one of the simplest probabilistic topic modeling techniques, latent Dirichlet allocation (LDA) has found many important applications in text mining, computer vision and computational biology. Recent training algorithms for LDA can be interpreted within a unified message passing framework. However, message passing requires storing previous messages with a large amount of memory space, increasing linearly with the number of documents or the number of topics. Therefore, the high memory usage is often a major problem for topic modeling of massive corpora containing a large number of topics. To reduce the space complexity, we propose a novel algorithm without storing previous messages for training LDA: tiny belief propagation (TBP). The basic idea of TBP relates the message passing algorithms with the non-negative matrix factorization (NMF) algorithms, which absorb the message updating into the message passing process, and thus avoid storing previous messages. Experimental results on four large data sets confirm that TBP performs comparably well or even better than current state-of-the-art training algorithms for LDA but with a much less memory consumption. TBP can do topic modeling when massive corpora cannot fit in the computer memory, for example, extracting thematic topics from 7 GB PUBMED corpora on a common desktop computer with 2GB memory.Comment: 20 pages, 7 figure

    A New Approach to Speeding Up Topic Modeling

    Full text link
    Latent Dirichlet allocation (LDA) is a widely-used probabilistic topic modeling paradigm, and recently finds many applications in computer vision and computational biology. In this paper, we propose a fast and accurate batch algorithm, active belief propagation (ABP), for training LDA. Usually batch LDA algorithms require repeated scanning of the entire corpus and searching the complete topic space. To process massive corpora having a large number of topics, the training iteration of batch LDA algorithms is often inefficient and time-consuming. To accelerate the training speed, ABP actively scans the subset of corpus and searches the subset of topic space for topic modeling, therefore saves enormous training time in each iteration. To ensure accuracy, ABP selects only those documents and topics that contribute to the largest residuals within the residual belief propagation (RBP) framework. On four real-world corpora, ABP performs around 1010 to 100100 times faster than state-of-the-art batch LDA algorithms with a comparable topic modeling accuracy.Comment: 14 pages, 12 figure

    Revisiting van der Waals like behavior of f(R) AdS black holes via the two point correlation function

    Full text link
    Van der Waals like behavior of f(R)f(R) AdS black holes is revisited via two point correlation function, which is dual to the geodesic length in the bulk. The equation of motion constrained by the boundary condition is solved numerically and both the effect of boundary region size and f(R)f(R) gravity are probed. Moreover, an analogous specific heat related to δL\delta L is introduced. It is shown that the TδLT-\delta L graphs of f(R)f(R) AdS black holes exhibit reverse van der Waals like behavior just as the TST-S graphs do. Free energy analysis is carried out to determine the first order phase transition temperature TT_* and the unstable branch in TδLT-\delta L curve is removed by a bar T=TT=T_*. It is shown that the first order phase transition temperature is the same at least to the order of 101010^{-10} for different choices of the parameter bb although the values of free energy vary with bb. Our result further supports the former finding that charged f(R)f(R) AdS black holes behave much like RN-AdS black holes. We also check the analogous equal area law numerically and find that the relative errors for both the cases θ0=0.1\theta_0=0.1 and θ0=0.2\theta_0=0.2 are small enough. The fitting functions between logTTc \log\mid T -T_c\mid and logδLδLc\log\mid\delta L-\delta L_c\mid for both cases are also obtained. It is shown that the slope is around 3, implying that the critical exponent is about 2/32/3. This result is in accordance with those in former literatures of specific heat related to the thermal entropy or entanglement entropy.Comment: Revised version. Match the published version. 14pages,5figure

    Possible Molecular Structure of the Newly Observed Y(4260)

    Full text link
    We suggest that the newly observed resonance Y(4260) is a χcρ0\chi_{c}-\rho^0 molecule, which is an isovector. In this picture, we can easily interpret why Y(4260)π+πJ/ψY(4260)\to \pi^+\pi^-J/\psi has a larger rate than Y(4260)DDˉY(4260)\to D\bar D which has not been observed, and we also predict existence of the other two components of the isotriplet and another two possible partner states which may be observed in the future experiments. A direct consequence of this structure is that for this molecular structure Y(4260)π+πJ/ψY(4260)\to \pi^+\pi^-J/\psi mode is more favorable than Y(4260)KKˉJ/ψY(4260)\to K\bar KJ/\psi which may have a larger fraction if other proposed structures prevail.Comment: 5 pages, 2 figures. Some descriptions changed, more references added and typos corrected. Published version in PR

    Deterministic and Efficient Quantum Cryptography Based on Bell's Theorem

    Full text link
    We propose a novel double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similarly to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under current technology.Comment: 4 pages, 1 figure; published version with a note adde

    Design and analysis of driving motor system for hybrid electric vehicle

    Get PDF
    In order to improve the reliability and stability of hybrid electric vehicle driving motor system, according to the performance parameters of the hybrid electric vehicle, the driving motor system is designed and analyzed for the hybrid electric vehicle. Based on the performance parameters of the hybrid electric vehicle, the power parameters of the permanent magnet synchronous motor (PMSM) are calculated and determined, then the parameters of the stator core, the permanent magnet and the rotor core are designed and calculated, as well as other main characteristic parameters of the driving motor system are calculated. The model of a PMSM is established and simulated by ANSOFT Maxwell according to the obtained motor parameters, and then the steady state and transient state of the driving motor are simulated in different working points, and the electromagnetic and performance curves are combined to determine the overall performance requirements of the driving motor, which can be used to match the hybrid electric vehicle. The simulation results show that the designed PMSM can be used to match the hybrid electric vehicle and meet the performance requirements of the vehicle. The final simulation analysis results are in good agreement with the theoretical calculation results, which indicates that this method can be used to afford a theoretical basis to reduce the cogging torque and optimize the in-wheel motor of electric vehicle in the future
    corecore