3,229 research outputs found

    Potential Field Cellular Automata Model for Pedestrian Evacuation in a Domain with a Ramp

    Get PDF
    We propose a potential field cellular automata model with a pushing force field to simulate the pedestrian evacuation in a domain with a ramp. We construct a cost potential depending on the ramp angle and introduce a function to evaluate the pushing force, which is related to the cost and the desired direction of pedestrian. With increase of crowd density, there is no empty space for pedestrian moving forward; pedestrian will purposefully push another pedestrian on her or his desired location to arrive the destination quickly. We analyse the relationship between the slope of ramp and the pushing force and investigate the changing of injured situations with the changing of the slope of ramp. When the number of pedestrians and the ramp angle arrive at certain critical points, the Domino effect will be simulated by this proposed model

    Geometric bionics: Lotus effect helps polystyrene nanotube films get good blood compatibility

    Get PDF
    Various biomaterials have been widely used for manufacturing biomedical applications including artificial organs, medical devices and disposable clinical apparatus, such as vascular prostheses, blood pumps, artificial kidney, artificial hearts, dialyzers and plasma separators, which could be used in contact with blood^1^. However, the research tasks of improving hemocompatibility of biomaterials have been carrying out with the development of biomedical requirements^2^. Since the interactions that lead to surface-induced thrombosis occurring at the blood-biomaterial interface become a reason of familiar current complications with grafts therapy, improvement of the blood compatibility of artificial polymer surfaces is, therefore a major issue in biomaterials science^3^. After decades of focused research, various approaches of modifying biomaterial surfaces through chemical or biochemical methods to improve their hemocompatibility were obtained^1^. In this article, we report that polystyrene nanotube films with morphology similar to the papilla on lotus leaf can be used as blood-contacted biomaterials by virtue of Lotus effect^4^. Clearly, this idea, resulting from geometric bionics that mimicking the structure design of lotus leaf, is very novel technique for preparation of hemocompatible biomaterials

    Fault diagnosis for rotating machinery based on multi-differential empirical mode decomposition

    Get PDF
    The fault diagnosis of rotating machinery has crucial significance for the safety of modern industry, and the fault feature extraction is the key link of the diagnosis process. As an effective time-frequency method, Empirical Mode Decomposition (EMD) has been widely used in signal processing and feature extraction. However, the mode mixing phenomenon may lead to confusion in the identification of multi frequency signals and restricts the applications of EMD. In this paper, a novel method based on Multi-Differential Empirical Mode Decomposition (MDEMD) was proposed to extract the energy distribution characteristics of fault signals. Firstly, multi-order differential signals were deduced and decomposed by EMD. Then, their energy distribution characteristics were extracted and utilized to construct the feature matrix. Finally, taking the feature matrix as input, the classifiers were applied to diagnosis the existence and severity of rotating machinery faults. Simulative and practical experiments were implemented respectively, and the results demonstrated that the proposed method, i.e. MDEMD, is able to eliminate the mode mixing effectively, and the feature matrix extracted by MDEMD has high separability and universality, furthermore, the fault diagnosis based on MDEMD can be accomplished more effectively and efficiently with satisfactory accuracy

    CMT: Cross Modulation Transformer with Hybrid Loss for Pansharpening

    Full text link
    Pansharpening aims to enhance remote sensing image (RSI) quality by merging high-resolution panchromatic (PAN) with multispectral (MS) images. However, prior techniques struggled to optimally fuse PAN and MS images for enhanced spatial and spectral information, due to a lack of a systematic framework capable of effectively coordinating their individual strengths. In response, we present the Cross Modulation Transformer (CMT), a pioneering method that modifies the attention mechanism. This approach utilizes a robust modulation technique from signal processing, integrating it into the attention mechanism's calculations. It dynamically tunes the weights of the carrier's value (V) matrix according to the modulator's features, thus resolving historical challenges and achieving a seamless integration of spatial and spectral attributes. Furthermore, considering that RSI exhibits large-scale features and edge details along with local textures, we crafted a hybrid loss function that combines Fourier and wavelet transforms to effectively capture these characteristics, thereby enhancing both spatial and spectral accuracy in pansharpening. Extensive experiments demonstrate our framework's superior performance over existing state-of-the-art methods. The code will be publicly available to encourage further research

    Schr\"odinger-Heisenberg Variational Quantum Algorithms

    Full text link
    Recent breakthroughs have opened the possibility to intermediate-scale quantum computing with tens to hundreds of qubits, and shown the potential for solving classical challenging problems, such as in chemistry and condensed matter physics. However, the extremely high accuracy needed to surpass classical computers poses a critical demand to the circuit depth, which is severely limited by the non-negligible gate infidelity, currently around 0.1-1%. Here, by incorporating a virtual Heisenberg circuit, which acts effectively on the measurement observables, to a real shallow Schr\"odinger circuit, which is implemented realistically on the quantum hardware, we propose a paradigm of Schr\"odinger-Heisenberg variational quantum algorithms to resolve this problem. We choose a Clifford virtual circuit, whose effect on the Hamiltonian can be efficiently and classically implemented according to the Gottesman-Knill theorem. Yet, it greatly enlarges the state expressivity, realizing much larger unitary t-designs. Our method enables accurate quantum simulation and computation that otherwise is only achievable with much deeper and more accurate circuits conventionally. This has been verified in our numerical experiments for a better approximation of random states and a higher-fidelity solution to the ground state energy of the XXZ model. Together with effective quantum error mitigation, our work paves the way for realizing accurate quantum computing algorithms with near-term quantum devices.Comment: We propose a framework of virtual Heisenberg-circuits-enhanced variational quantum algorithms, which can noiselessly increase the effective circuit depth to enlarge the quantum circuit expressivity and find high-fidelity ground state

    Relationship and prognostic significance of SPARC and VEGF protein expression in colon cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SPARC (secreted protein, acidic and rich in cysteine) is closely related with the progress, invasion and metastasis of malignant tumor and angiogenesis.</p> <p>Methods</p> <p>Using human colon adenocarcinoma tissues (hereinafter referred to as colon cancer) and their corresponding non-diseased colon from 114 patients' biopsies, the expression of SPARC and vascular endothelial growth factor (VEGF) were investigated by immunohistochemistry staining to assessment the relationship between SPARC and VEGF, as well as their prognostic significance in patients. Evaluation of VEGF expression level with the same tissues was used to establish the antigenic profiles, and the marker of CD34 staining was used as an indicator of microvessel density (MVD).</p> <p>Results</p> <p>SPARC expression was mainly in the stromal cells surrounding the colon cancer, and was significant difference in those tissues with the lymph node metastasis and differentiation degree of tumor. Expression of SPARC was significantly correlated with the expression of VEGF and MVD in colon cancer tissues. Patients with low or absence expressing SPARC had significantly worse overall survival and disease-free survival in a Single Factor Analysis; Cox Regression Analysis, SPARC emerged as an overall survival and disease-free survival independent prognostic factor for colon cancer.</p> <p>Conclusion</p> <p>The low expression or absence of stromal SPARC was an independent prognostic factor for poor prognosis of colon cancer. SPARC maybe involved in the regulation of anti-angiogenesis by which it may serve as a novel target for colon cancer treatment as well as a novel distinctive marker.</p
    • …
    corecore