5,412 research outputs found

    Microscopic theory of quantum anomalous Hall effect in graphene

    Full text link
    We present a microscopic theory to give a physical picture of the formation of quantum anomalous Hall (QAH) effect in graphene due to a joint effect of Rashba spin-orbit coupling λR\lambda_R and exchange field MM. Based on a continuum model at valley KK or K′K', we show that there exist two distinct physical origins of QAH effect at two different limits. For M/λR≫1M/\lambda_R\gg1, the quantization of Hall conductance in the absence of Landau-level quantization can be regarded as a summation of the topological charges carried by Skyrmions from real spin textures and Merons from \emph{AB} sublattice pseudo-spin textures; while for λR/M≫1\lambda_R/M\gg1, the four-band low-energy model Hamiltonian is reduced to a two-band extended Haldane's model, giving rise to a nonzero Chern number C=1\mathcal{C}=1 at either KK or K′K'. In the presence of staggered \emph{AB} sublattice potential UU, a topological phase transition occurs at U=MU=M from a QAH phase to a quantum valley-Hall phase. We further find that the band gap responses at KK and K′K' are different when λR\lambda_R, MM, and UU are simultaneously considered. We also show that the QAH phase is robust against weak intrinsic spin-orbit coupling λSO\lambda_{SO}, and it transitions a trivial phase when λSO>(M2+λR2+M)/2\lambda_{SO}>(\sqrt{M^2+\lambda^2_R}+M)/2. Moreover, we use a tight-binding model to reproduce the ab-initio method obtained band structures through doping magnetic atoms on 3×33\times3 and 4×44\times4 supercells of graphene, and explain the physical mechanisms of opening a nontrivial bulk gap to realize the QAH effect in different supercells of graphene.Comment: 10pages, ten figure

    Bootstrap Confidence Intervals for Medical Costs With Censored Observations

    Get PDF
    Medical costs data with administratively censored observations often arise in cost-effectiveness studies of treatments for life threatening diseases. Mean of medical costs incurred from the start of a treatment till death or certain timepoint after the implementation of treatment is frequently of interest. In many situations, due to the skewed nature of the cost distribution and non-uniform rate of cost accumulation over time, the currently available normal approximation confidence interval has poor coverage accuracy. In this paper, we proposed a bootstrap confidence interval for the mean of medical costs with censored observations. In simulation studies, we showed that the proposed bootstrap confidence interval had much better coverage accuracy than the normal approximation one when medical costs had a skewed distribution. When there is light censoring on medical costs (less than or equal to 25%), we found that the bootstrap confidence interval based on the simple weighted estimator is preferred due to its simplicity and good coverage accuracy. For heavily censored cost data (censoring rate greater than or equal to 30%) with larger sample sizes (n greater than or equal to 200), the bootstrap confidence intervals based on the partitioned estimator has superior performance in terms of both efficiency and coverage accuracy. We also illustrated the use of our methods in a real example

    The edge engineering of topological Bi(111) bilayer

    Full text link
    A topological insulator is a novel quantum state, characterized by symmetry-protected non-trivial edge/surface states. Our first-principle simulations show the significant effects of the chemical decoration on edge states of topological Bi(111) bilayer nanoribbon, which remove the trivial edge state and recover the Dirac linear dispersion of topological edge state. By comparing the edge states with and without chemical decoration, the Bi(111) bilayer nanoribbon offers a simple system for assessing conductance fluctuation of edge states. The chemical decoration can also modify the penetration depth and the spin texture of edge states. A low-energy effective model is proposed to explain the distinctive spin texture of Bi(111) bilayer nanoribbon, which breaks the spin-momentum orthogonality along the armchair edge.Comment: 5 pages, 5 figure

    Topological phases in gated bilayer graphene: Effects of Rashba spin-orbit coupling and exchange field

    Full text link
    We present a systematic study on the influence of Rashba spin-orbit coupling, interlayer potential difference and exchange field on the topological properties of bilayer graphene. In the presence of only Rashba spin-orbit coupling and interlayer potential difference, the band gap opening due to broken out-of-plane inversion symmetry offers new possibilities of realizing tunable topological phase transitions by varying an external gate voltage. We find a two-dimensional Z2Z_2 topological insulator phase and a quantum valley Hall phase in ABAB-stacked bilayer graphene and obtain their effective low-energy Hamiltonians near the Dirac points. For AAAA stacking, we do not find any topological insulator phase in the presence of large Rashba spin-orbit coupling. When the exchange field is also turned on, the bilayer system exhibits a rich variety of topological phases including a quantum anomalous Hall phase, and we obtain the phase diagram as a function of the Rashba spin-orbit coupling, interlayer potential difference, and exchange field.Comment: 15 pages, 17figures, and 1 tabl
    • …
    corecore