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1. INTRODUCTION

In a cost-effectiveness study of treatments, the focus is often on the average of total

medical costs over a certain time period, say [0, τ ], in a given patient population, where τ

may be five or twenty years. Given the skewed nature of medical cost data, some may argue

for the use of the median instead the mean as the measure of central location. However, in

analyses of medical cost data, only the mean, not the median, can be used to recover the

total medical cost, which reflects the entire expenditure on health care in a given patient

population. In this paper, we focus on making inferences on population means.

Estimating this mean can be complicated by censored cost observations for some patients

who are not followed for the entire time period [0, τ ]. For those censored patients, their true

total costs over [0, τ ] are unknown. By considering costs as potentially right-censored sur-

vival times, several authors have tried to adjust for censoring by using standard survival

techniques. However, Lin et al. [1] have shown this strategy is not valid unless all patients

accrue costs with a common rate function over time and have proposed a non-parametric

consistent estimator for estimating the mean of the total costs under the assumption the

censoring time distribution is discrete. Without making this assumption, Bang and Tsiatis

[2] proposed a simple weighted estimator and established its consistency and asymptotic nor-

mality. Their estimator works well for lightly censored cost data (censoring rate ≤ 30%), but

is quite inefficient for heavily censored data (censoring rate > 40%) since the estimator does

not use any cost information from censored patients. If one can partition [0, τ ] into some

subintervals and if piecewise costs of each patient are available over those subintervals up to

the observed survival time, Bang and Tsiatis [2] also proposed a more efficient partitioned

estimator. Even though asymptotic properties of the partitioned estimator were nicely es-
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tablished, the estimator itself and its asymptotic variance bear some complicated forms.

In Section 2, we simplify the expressions of the partitioned estimator and its asymptotic

variance so that the simplified versions are computationally more straightforward.

As noted before, medical cost observations have a right skewed distribution (Diehr et

al.[3]; Zhou et al. [4]; and Zhou and Tu [5]; Zhou and Tu [6]; and Lumley et al. [7]). In the

simulation studies of Bang and Tsiatis [2] and Lin [1], cost observations were generated from

some mixed uniform distributions and the resulting total costs have an approximately normal

distribution. In this paper we show that confidence intervals based on normal approximations

of Bang and Tsiatis’ estimators can have much lower than nominal level coverage probabilities

when cost observations are moderately or severely skewed. To fix this problem, we propose a

bootstrap confidence interval, and our simulation study show that its coverage probabilities

are close to nominal level coverage probabilities even for small sample sizes. Our paper is

organized as follows. In Section 2 we describe the currently used confidence intervals for

the mean of total medical costs when some patients are censored. In Section 3 we propose

a bootstrap confidence interval for the mean of total medical costs when some patients are

censored. In Section 4 we describe a simulation study for assessing the relative performance

of the new bootstrap interval with the existing intervals. In Section 5 we illustrate the

proposed method in a real study.

2. NOTATION AND ESTIMATORS

Let M(t) denote the random cumulative medical cost of a patient up to time t. Since

no medical costs will be accrued after death, the total cost of a patient incurred in the time

period [0, τ ] is actually M(T ∧ τ), where T is the true survival time of the patient and a∧ b
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denotes the minimum of a and b. Let us introduce some notation for standard survival data.

If we let C denote a random censoring time of the patient, the observed survival time of the

patient is X = T ∧C, and δ = I(T ≤ C) indicates whether the true survival time is observed

or not, where I(.) denotes an indicator function. For a medical cost study, we need to define

another indicator η = I(T ∧ τ ≤ C), which is equal to 1 if the total medical cost accrued

over [0, τ ], M(T ∧ τ), is observed, and 0 if a censored total medical cost, M(C), is observed.

In the standard survival analysis, the censoring time, C, is assumed to be independent of

the true survival time, T . For a medical cost study, we need to make a stronger assumption

than the one in the standard survival analysis. We have to assume that C is independent of

all other random variables in the study; this assumption insures that censoring occurs in a

completely random fashion. If the only reason for the occurrence of censoring is the study

termination, this assumption holds. This type of censoring is referred to as administrative

censoring.

If we do not have the cost history of a patient over time and have only the total cost

for each patient, the observed data can be represented as n independent and identically

distributed realizations of (X, δ, η, M(X)). We can than denote the censored medical cost

data as {(Xi, δi, ηi,Mi), i = 1 . . . n}, where Mi = M(Xi). Let µ = E(M(T ∧ τ)), which is

the true mean of the total cost of a patient over time period [0, τ ]. Let K(.) be the survival

function of the censoring variable C; that is, K(t) = pr(C ≥ t). Bang and Tsiatis [2]

proposed the following simple weighted estimator for µ:

µ̂S =
1

n

n∑

i=1

ηiMi

K̂(Ti)
, (1)

where K̂(.) is the Kaplan-Meier (K-M) estimator for K(.), based on data {(Xi, 1 − δi), i =

1 . . . n}. Bang and Tsiatis [2] have shown that this estimator is consistent and asymptotically

5

Hosted by The Berkeley Electronic Press



normally distributed. They have also provided the asymptotic variance for n1/2µ̂S, denoted

by (σS)2, and the corresponding consistent estimator (σ̂S)2.

Assuming that
√

n(µ̂S − µ)/σ̂S has the standard normal distribution, we may obtain a

(1− α)100% confidence interval for µ as follows:

[µ̂S − n−1/2z1−α/2σ̂S, µ̂S + n−1/2z1−α/2σ̂S],

where zp denotes the pth quantile of the standard normal distribution. One drawback of

this estimator is its efficiency when many patients are censored because we only use cost

information from uncensored patients in its calculation.

If we can partition the interval [0, τ ] into L subintervals (tj, tj+1], j = 0, 1, ..., L− 1, and

if the costs incurred in each of these subintervals up to X ∧ τ are available for each patient,

Bang and Tsiatis [2] also proposed the following more efficient estimator of µ:

µ̂P =
1

n

n∑

i=1

L∑

j=1

ηj
i Mij

K̂j(T
j
i )

. (2)

Here T j
i = Ti ∧ tj, ηj

i = I(T j
i ≤ Ci), Mij = Mi(tj) − Mi(tj−1), and K̂j(.) is the K-M

estimator for the survival function of C, based on the dataset {(Xj
i , 1 − ηj

i ), i = 1, ..., n},

where Xj
i = T j

i ∧Ci. Let λc(.) denote the hazard function of the censoring random variable

Ci, Sj(u) = pr(T j
i ≥ u), and

Gj(Ml, u) =
1

Sj(u)
E{MilI(T j

i ≥ u)}.

Bang and Tsiatis [2] have shown that n
1
2 (µ̂P −µ) has an asymptotically normal distribution

with mean 0 and variance,

σ2
P = var(Mi − µ) +

∫ τ

0

L∑

j=1

L∑

l=1

Sj∧l(u){Gj∧l(MjMl, u)−Gj∧l(Mj, u)Gj∧l(Ml, u)}λc(u)

K(u)
du. (3)
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From (2) and (3), we see that to compute µ̂P and its associated variance we need to

compute L times of the estimators K̂j(.), Ŝj(.), and Ĝj(.), which might result in complexity of

the calculation of variance estimation. In Appendix we show that this partitioned estimator

can be simplified to

µ̂P =
1

n

n∑

i=1

L∑

j=1

ηj
i Mij

K̂(T j
i )

,

where K(.) is the Kaplan-Meier estimator for the survival function of C based on {(Xi, 1−

δi), i = 1, ..., n}. In this simplified version, we only need to compute one K-M estimator.

Using a different derivation method, we can also show its asymptotic variance can be greatly

simplified for computation. The simplified expressions of σP and σ̂P are as follows:

σ2
P = var(Mi − µ) +

L∑

j=1

L∑

l=1

∫ tj∧l

0
S(u){G(MjMl, u)−G(Mj, u)G(Ml, u)}λc(u)

K(u)
du,

σ̂2
P =

1

n

n∑

i=1

ηi(Mi − µ̂P )2

K̂(Ti)
+

L∑

j=1

L∑

l=1

∫ tj∧l

0
Ŝ(u){Ĝ(MjMl, u)− Ĝ(Mj, u)Ĝ(Ml, u)} dN c(u)

Y (u)K̂(u)

where

Ĝ(Mj, u) =
1

nŜ(u)

n∑

i=1

ηj
i MijI(Ti ≥ u)

K̂(T j
i )

,

Ĝ(MjMl, u) =
1

nŜ(u)

n∑

i=1

ηj∨l
i MijMilI(Ti ≥ u)

K̂(T j∨l
i )

, and j ∨ l = max(j, l).

Thus, instead of computing L functional estimators of Kj’s, Sj’s and Gj’s as in the

original formula for the partitioned estimator and its variance, with the simplified formulas

we only need to compute them once, which eases the computation. Assuming the normality

for
√

n(µ̂P − µ)/σ̂P , we obtain a (1− α)100% confidence interval for µ as follows:

[µ̂P − n−1/2z1−α/2σ̂P , µ̂P + n−1/2z1−α/2σ̂P ].

3. A BOOTSTRAP CONFIDENCE INTERVAL
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Let µ̂ and (σ̂)2 be a simple weighted or partitioned estimator for µ and its corresponding

variance estimator, respectively. Although many bootstrap intervals, including Efron’s bias-

corrected accelerated (BCa) bootstrap interval [8], are available for the population mean, it

has been shown that the bootstrap-t interval has the best coverage accuracy in finite sample

sizes (Hall [9]; Shao and Tu [10]). Hence we chose to develop a bootstrap-t interval for µ.

The bootstrap-t interval is based on the bootstrap distribution of the studentized statistics,

T =
√

n(µ̂− µ)/σ̂.

By considering the original data, {(Xi, δi, ηi,Mi), i = 1, . . . , n}, as an independent and

identically distributed (i.i.d.) sample from the joint distribution function for (X, δ, η, M),

we generate our bootstrap samples, by sampling with replacement from {(Xi, δi, ηi,Mi), i =

1, . . . , n}. Let (X∗b
i , δ∗bi , η∗bi ,M∗b

i ), i = 1, . . . , n, be the bth bootstrap sample, b = 1, . . . , B.

Let µ̂∗b and (σ̂∗b )
2 be respectively the values of µ̂ and σ̂2 using the bth bootstrap sample. We

calculate the bootstrap version of T as

T ∗
b =

√
n

µ̂∗b − µ̂

σ̂∗b
.

Then, a (1− α)% bootstrap-t confidence interval for µ is given by

[µ̂− n−1/2Uσ̂, µ̂− n−1/2Lσ̂],

where L and U are the α/2th and (1− α/2)th quantiles of {T ∗
b , b = 1, . . . , B} respectively.

4. NUMERICAL STUDIES

We adopted a similar setup for our simulation study as in Bang and Tsiatis [2] except

that we used skewed distributions for medical costs. The average 10-year cost µ and its 95%

8

http://biostats.bepress.com/uwbiostat/paper202



confidence interval are parameters of interest. The survival time T was generated from two

distributions, the uniform distribution over [0, 10 years] and the exponential distribution with

a mean of 5 years. We generated an independent censoring variable C from the two uniform

distributions, one over [0, 20 years] and the other over [0, 12.5 years], which correspond to

light censoring (22% − 25%) and relatively heavy censoring (30% − 40%) on the survival

time within 10 years, respectively. We assumed the true total medical cost of a patient over

[0, T ∧ 10], denoted by M , had a log-normal distribution; that is, log M ∼ N(ρ, σ2), where

ρ = 8 + 1
3
T and where σ was chosen to be either 0.3, 0.5, 0.7 or 1. Under this setup for

the distribution of costs, the expected total medical cost of a patient becomes larger as the

survival time increases, and the cost distribution becomes more skewed as σ increases. The

coefficient of skewness ranged from 1.6 to 8.7 reflecting moderate to severe skewness observed

in medical cost data [3-6]. For computing the partitioned estimator, we divided the 10-year

period into 10 1-year subintervals and the cost incurred in each subinterval up to [0, X ∧ 10]

were obtained according to the cost distribution described above. To construct a bootstrap

confidence interval, we resampled 1000 samples with replacement for each generated dataset.

In all the following tables, the top half corresponds to the simulation results when the

survival time had a uniform distribution, and the bottom half corresponds to the simulation

results when the survival time had an exponential distribution. The first column specifies

the parameter σ of a log-normal distribution we used for generating medical costs, and

the corresponding coefficient of skewness of the cost distribution, β, is listed in the second

column. The third column presents the true expected 10-year total cost µ. In Tables 1-2,

since both the simple weighted and partitioned estimates of µ are more or less unbiased, we

did not report the point estimates in the table. For the comparison purpose, we used two
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methods to construct 95% confidence intervals (C.I.) for µ; the first method uses a normal

approximation for Bang and Tsiatis’ estimators (denoted as “BT” in the table), and the

second method uses the bootstrap method described in Section 3 (denoted as “boot” in the

table). Pcover denotes the coverage probability of the C.I.’s.

Table 1 goes here

All entries in the last eight columns of Table 1 are averages from 1000 simulations with

a fixed sample size of 100 in each setting. The simulation results show that for moderate

sample sizes, the symmetric confidence intervals based on the normal approximation have

coverage probabilities that are much lower than the nominal level when cost distributions

are skewed. The problem is more severe as the degree of skewness increases or censoring

rate increases. In the presence of light censoring, the improvement in efficiency or coverage

accuracy of bootstrap confidence intervals based on the partitioned estimator is minimal

compared to those based on the simple weighted estimator. When the censoring is heavy,

the former has noticeable efficiency advantage than the latter.

Numerical studies were also conducted at larger sample sizes under the above simulation

schemes. Table 2 shows a comparison of the two types of confidence intervals (BT and

boot) based on both the simple weighted and the partitioned estimator in the presence

of heavy censoring with n = 200 or 400. As sample size increases, the performance of

both types of confidence intervals improve, however, the coverage probabilities from the

normal approximation approach are still much lower than the nominal level when the cost

distribution is severely skewed. Overall, the bootstrap confidence interval based on the

partitioned estimator has the superior performance for sample size ≥ 200 and censoring rate

≥ 30%.
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Table 2 goes here

For comparison purpose, we also estimated the mean medical cost for the simulated

skewed medical cost data with censoring using a simple but very useful estimate in medical

cost analysis – mean cost per person-month multiplied by the number of expected follow-up

time on study based on the estimated survival distribution. We refer to this estimator as

the “person-month estimator” for simplicity. The variance of the person-month estimator is

estimated by the empirical variance of the estimates obtained from 1000 bootstrap samples

for each simulated dataset and a 95% confidence interval is constructed using a normal

approximation. In Table 3, we present the relative bias (RB) and coverage probability

(Pcover) of the simple estimator under three censoring schemes: no censoring, light censoring

and heavy censoring. The relative bias is computed using the difference between the average

estimated mean cost and the true mean cost (µ) divided by the true mean cost. In all

settings, the sample size is fixed at 100 and all entries in the last six columns are based on

1000 simulations.

Table 3 goes here

Table 3 shows that the person-month estimate is unbiased when there is no censoring

on the survival time. However, the coverage probability may not be correct when the cost

distribution is severely skewed (β ≥ 4). Since the simulated cost processes have increasing

monthly cost over time, the person-month estimate tends to underestimate the true mean

cost in the presence of censoring and the coverage probabilities of its confidence interval

decrease sharply as the censoring rate increases. In other simulations, we found that as

long as the cost accumulation rate is uniform over time, the unbiasness of the person-month
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estimator and the coverage accuracy of its confidence intervals are not affected by the failure

time distribution or the censoring rate. Thus, for censored medical cost data, if the cost

accumulation process is suspected to be non-uniform over time, the simple person-month

estimator is not a good choice, and more complicated methods like the simple weighted or

partitioned estimator should be used.

5. A REAL DATA EXAMPLE

To demonstrate the application of our methodology, we used the same cardiology clinical

trial data as in Bang and Tsiatis [2]. In this trial, 10,948 acute coronary syndrome patients

were randomized to receive either intravenous bolus and 72-hour eptifibatide (i.e. integrilin)

or placebo. The main study objective was to test whether Integrilin could reduce the 30-day

incidence of death and myocardial infarction. A prospective economic sub-study with 2547

patients enrolled was also conducted to compare mean medical costs incurred from initiation

of the treatment until death or six month after the initiation. Since there is no significant

difference in costs across treatments, we use the pooled data to illustrate estimation of

the mean cost with censored observations. As there is up to one year delay in reporting

the six-month medical cost, we use the cost data available at 550 days after study started

to illustrate our methodology and the censoring rate was 48% at that point. Since this

cost-effectiveness study was completed in January 1997, complete cost data for all enrolled

patients are available now. The sample average of the mean cost is $32,596, which can be

considered as the true mean cost and be compared with the estimates we obtained from the

censored medical cost data. As piece-wise costs over time were not available, the partitioned

estimator was not used in estimating the mean medical cost. Simple weighted estimator
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gives an estimate of the mean six-month medical cost as $29,301. The bootstrap confidence

interval for the mean six-month cost based on 5000 resampling is [$25,424, $34,016] while

the confidence interval constructed using normal approximation is [$26,406, $32,195]. Not

surprisingly, the bootstrap confidence interval is wider than the interval based on the normal

approximation, and the former covers the true mean cost ($32,596) while the latter does

not. The result is consistent with our simulation results which showed that the normal

approximation interval has coverage probability that is much lower than the nominal level

while the bootstrap interval has the coverage probability that is close to the nominal level.

On the other hand, the person-month estimator gives an estimate of $40,855 for the mean

six-month medical cost and a confidence interval [$39,236, $42,474]. The person-month

estimator overestimates the true mean because in this dataset, patients with shorter survival

times tend to have higher medical costs.

6. CONCLUSIONS

Cost-effectiveness studies are often conducted in comparing treatments for life threaten-

ing diseases. Mean cost incurred from the start of a treatment till death or certain timepoint

after the implementation of treatment is frequently of interest. In most cases, cost data

may be censored to certain degree due to limited followup time. On the other hand, the

cost accumulation rate over time may depend on disease progression and the survival time,

and hence is non-uniform over time. Thus, the simple person-month estimator is no longer

appropriate and special estimates as proposed by Bang & Tsiatis should be used. In this

article, we simplified the expression of Bang & Tsiatis’ partitioned estimator to make the

computation procedure much easier, and proposed a bootstrap confidence interval for the
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mean of medical costs with censored observations instead of the currently available nor-

mal approximation confidence intervals. Numerical studies have shown that the proposed

bootstrap confidence intervals have much better coverage accuracy than the normal approxi-

mation ones when medical costs have a skewed distribution. When there is light censoring on

medical costs (≤ 25%), we have found that the bootstrap confidence intervals based on the

simple weighted estimator is preferred due to its simplicity and good coverage accuracy. For

heavily censored cost data (censoring rate ≥ 30%) with larger sample sizes (n ≥ 200), the

bootstrap confidence intervals based on the partitioned estimator has superior performance

in terms of both efficiency and coverage accuracy.

Our proposed bootstrap sampling was based on one simple sampling plan for a Cox’s

regression model that has been shown to have some good theoretical properties (Shao and Tu

[9]). However, there are other types of bootstrap procedures available for survival data (Burr

[10]), such as the one based on generalized residuals (Shao and Tu [9]) and the one based on

conditional resampling (Davison and Hinkley [11]). It is an interesting future research topic

to study both theoretical and finite-sample properties of these various bootstrap methods

for the analysis of health care costs.
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According to Bang and Tsiatis [2], the partitioned estimator µ̂P is as given in (2) and

the asymptotic variance of n
1
2 (µ̂P − µ) has following form:

σ2
P = var(Mi − µ) + (4)

∫ τ

0

L∑

j=1

L∑

l=1

Sj∧l(u){Gj∧l(MjMl, u)−Gj∧l(Mj, u)Gj∧l(Ml, u)}λc(u)

K(u)
du.

An estimator of σP is proposed as

σ̂2
P =

1

n

n∑

i=1

ηi(Mi − µ̂P )2

K̂(Ti)
+ (5)

∫ τ

0

L∑

j=1

L∑

l=1

Ŝj∧l(u){Ĝj∧l(MjMl, u)− Ĝj∧l(Mj, u)Ĝj∧l(Ml, u)} dN c(u)

Y (u)K̂(u)
,

where

Ĝj∧l(Ml, u) =
1

nŜj∧l(u)

n∑

i=1

ηj∨l
i MilI(T j∧l

i ≥ u)

K̂j∨l(T
j∨l
i )

,

Ĝj∧l(MjMl, u) =
1

nŜj∧l(u)

n∑

i=1

ηj∨l
i MijMilI(T j∧l

I ≥ u)

K̂j∨l(T
j∨l
i )

,

N c(u) =
∑n

i=1 I(Xi ≤ u, δi = 0), Y (u) =
∑n

i=1 I(Xi ≥ u), and Ŝj(.) is the K-M estimator of

Sj(.),

The simplified partitioned estimator is :

µ̂P =
1

n

n∑

i=1

L∑

j=1

ηj
i Mij

K̂(T j
i )

.

Since it can be shown that

K̂j(t) =





K̂(t) if t ≤ tj

K̂(tj) if t > tj

,

and we only need to evaluate K̂j at T j
i which does not exceed tj, we can drop the subscript

j from K̂j and use only one version instead of L versions of functional estimates of K(.) in

the computation.
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Furthermore, we can simplify the expressions in (3) and (5) by noticing that I(tj ≥ u) is

just a constant for any time point u. Hence,

Sj(u) = pr{T j
i > u} = pr{Ti > u}I(tj ≥ u) = S(u)I(tj ≥ u)

where S(u) = pr(T > u), and

E{MijI(T j
i ≥ u)} = E{MijI(Ti ≥ u)}I(tj ≥ u).

This implies that

Gj(Ml, u) =
1

Sj(u)
E{MilI(T j

i ≥ u)}

=
I(tj ≥ u)

S(u)
E{MilI(Ti ≥ u)} ≡ G(Ml, u)I(tj ≥ u).

The simplified expressions of σP and σ̂P are as follows:

σP = var(Mi − µ) +
L∑

j=1

L∑

l=1

∫ tj∧l

0
S(u){G(MjMl, u)−G(Mj, u)G(Ml, u)}λc(u)

K(u)
du,

σ̂P =
1

n

n∑

i=1

ηi(Mi − µ̂P )2

K̂(Ti)
+

K∑

j=1

K∑

l=1

∫ tj∧l

0
Ŝ(u){Ĝ(MjMl, u)− Ĝ(Mj, u)Ĝ(Ml, u)} dN c(u)

Y (u)K̂(u)

where

Ĝ(Mj, u) =
1

nŜ(u)

n∑

i=1

ηj
i MijI(Ti ≥ u)

K̂(T j
i )

and

Ĝ(MjMl, u) =
1

nŜ(u)

n∑

i=1

ηj∨l
i MijMilI(Ti ≥ u)

K̂(T j∨l
i )

.
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Table 1: Simulation results for bootstrap and BT confidence intervals (n=100)

Light Censoring Heavy Censoring

C.I. width 100 ∗ Pcover C.I. width 100 ∗ Pcover

σ β µ BT boot BT boot BT boot BT boot

Uniform survival distribution

0.3 1.64 25287

Simple weighted estimate 11240 12719 93.5 95.7 12899 18544 89.0 93.4

Partitioned estimate 10949 12150 94.0 95.8 12001 15213 91.0 93.8

0.5 2.60 27393

Simple weighted estimate 14223 16992 90.9 93.2 16980 27179 85.8 93.2

Partitioned estimate 13713 16192 92.3 94.7 14975 20546 89.4 93.0

0.7 4.20 30885

Simple weighted estimate 19310 25634 89.6 92.2 23283 44121 84.0 92.4

Partitioned estimate 18274 23511 90.6 92.3 19628 30075 86.5 92.9

1 7.87 39856

Simple weighted estimate 34660 559331 85.6 91.7 40176 96377 80.4 89.9

Partitioned estimate 31628 52694 88.0 93.5 32089 58407 82.3 91.3

Exponential survival distribution

0.3 1.87 24896

Simple weighted estimate 14133 16365 93.8 95.8 16274 38301 86.1 95.3

Partitioned estimate 13859 15831 91.6 94.7 15220 22919 90.5 92.8

0.5 2.84 26970

Simple weighted estimate 17673 22379 90.2 94.5 20834 54970 83.6 93.5

Partitioned estimate 16980 20864 91.4 93.8 18698 30610 86.9 89.7

0.7 4.55 30408

Simple weighted estimate 23576 34009 88.4 94.6 28005 92673 80.3 92.3

Partitioned estimate 21779 30030 89.0 94.2 23500 47899 83.1 93.2

1 8.72 39240

Simple weighted estimate 39148 73360 84.0 92.3 47460 215131 75.3 88.9

Partitioned estimate 36477 65231 84.2 90.9 37398 86788 77.9 88.3
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Table 2: Simulation results for bootstrap and BT confidence intervals under heavy censoring

n = 200 n = 400

C.I. width 100 ∗ Pcover C.I. width 100 ∗ Pcover

σ β µ BT boot BT boot BT boot BT boot

Uniform survival distribution

0.3 1.64 25287

Simple weighted estimate 9449 11361 91.3 94.0 6799 7384 93.0 93.8

Partitioned estimate 8784 9861 92.7 95.2 6305 6650 93.5 94.5

0.5 2.60 27393

Simple weighted estimate 12697 16424 89.4 92.3 9222 10576 93.6 93.8

Partitioned estimate 11074 13128 91.6 93.2 7993 8771 94.1 94.3

0.7 4.20 30885

Simple weighted estimate 17534 24580 88.7 93.2 13243 16460 91.2 94.8

Partitioned estimate 14689 18698 90.0 93.4 10901 12660 92.4 94.6

1 7.87 39856

Simple weighted estimate 31007 53530 85.0 91.4 24241 35787 88.0 90.9

Partitioned estimate 25347 38389 86.7 93.3 19273 25619 89.2 92.7

Exponential survival distribution

0.3 1.87 24896

Simple weighted estimate 12079 16667 93.0 96.3 8753 9408 93.6 93.8

Partitioned estimate 11133 13160 93.3 95.9 8017 8452 94.4 94.5

0.5 2.84 26970

Simple weighted estimate 16091 25994 88.0 93.6 11798 13829 93.2 94.6

Partitioned estimate 13700 17564 90.2 93.0 9978 11090 93.0 93.7

0.7 4.55 30408

Simple weighted estimate 22610 42025 86.7 93.3 16981 22730 91.0 94.2

Partitioned estimate 18329 26470 89.3 93.5 13559 16576 91.8 94.4

1 8.72 39240

Simple weighted estimate 37738 88373 82.2 91.2 30418 50353 86.7 91.5

Partitioned estimate 29737 52229 85.8 92.3 23251 33599 88.1 92.7
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Table 3: Simulation results for person-month estimate

no censoring light censoring heavy censoring

σ β µ 100 ∗ RB 100 ∗ Pcover 100 ∗ RB 100 ∗ Pcover 100 ∗ RB 100 ∗ Pcover

Uniform survival distribution

0.3 1.64 25287 0.2 93.1 -8.4 80.7 -15.6 55.6

0.5 2.60 27393 0.3 93.9 -8.7 79.5 -15.1 60.9

0.7 4.20 30885 0.2 92.0 -9.3 78.5 -15.5 64.0

1 7.87 39856 0.1 89.3 -8.0 77.4 -14.6 66.6

Exponential survival distribution

0.3 1.87 24896 0.3 94.2 -10.8 78.6 -20.4 51.1

0.5 2.84 26970 0.4 93.3 -11.5 77.6 -20.4 53.7

0.7 4.55 30408 -1.3 89.5 -11.7 75.4 -21.5 54.8

1 8.72 39240 0.5 88.4 -10.5 73.9 -19.9 60.2
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