4,287 research outputs found

    Cosmic e^\pm, \bar p, \gamma and neutrino rays in leptocentric dark matter models

    Full text link
    Dark matter annihilation is one of the leading explanations for the recently observed e±e^\pm excesses in cosmic rays by PAMELA, ATIC, FERMI-LAT and HESS. Any dark matter annihilation model proposed to explain these data must also explain the fact that PAMELA data show excesses only in e±e^\pm spectrum but not in anti-proton. It is interesting to ask whether the annihilation mode into anti-proton is completely disallowed or only suppressed at low energies. Most models proposed have negligible anti-protons in all energy ranges. We show that the leptocentric U(1)B−3LiU(1)_{B-3L_i} dark matter model can explain the e±e^\pm excesses with suppressed anti-proton mode at low energies, but at higher energies there are sizable anti-proton excesses. Near future data from PAMELA and AMS can provide crucial test for this type of models. Cosmic γ\gamma ray data can further rule out some of the models. We also show that this model has interesting cosmic neutrino signatures.Comment: Latex 20 pages and five figures. References adde

    Combination of Multiple Bipartite Ranking for Web Content Quality Evaluation

    Full text link
    Web content quality estimation is crucial to various web content processing applications. Our previous work applied Bagging + C4.5 to achive the best results on the ECML/PKDD Discovery Challenge 2010, which is the comibination of many point-wise rankinig models. In this paper, we combine multiple pair-wise bipartite ranking learner to solve the multi-partite ranking problems for the web quality estimation. In encoding stage, we present the ternary encoding and the binary coding extending each rank value to L−1L - 1 (L is the number of the different ranking value). For the decoding, we discuss the combination of multiple ranking results from multiple bipartite ranking models with the predefined weighting and the adaptive weighting. The experiments on ECML/PKDD 2010 Discovery Challenge datasets show that \textit{binary coding} + \textit{predefined weighting} yields the highest performance in all four combinations and furthermore it is better than the best results reported in ECML/PKDD 2010 Discovery Challenge competition.Comment: 17 pages, 8 figures, 2 table

    Entanglement entropy of critical spin liquids

    Full text link
    Quantum spin liquids are phases of matter whose internal structure is not captured by a local order parameter. Particularly intriguing are critical spin liquids, where strongly interacting excitations control low energy properties. Here we calculate their bipartite entanglement entropy that characterize their quantum structure. In particular we calculate the Renyi entropy S2S_2, on model wavefunctions obtained by Gutzwiller projection of a Fermi sea. Although the wavefunctions are not sign positive, S2S_2 can be calculated on relatively large systems (>324 spins), using the variational Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the projected Fermi-sea state violates the boundary law, with S2S_2 enhanced by a logarithmic factor. This is an unusual result for a bosonic wave-function reflecting the presence of emergent fermions. These techniques can be extended to study a wide class of other phases.Comment: 4+ pages, 2 figures, to be published in PR

    Infinite critical boson non-Fermi liquid on heterostructure interfaces

    Full text link
    We study the emergence of non-Fermi liquid on heterostructure interfaces where there exists an infinite number of critical boson modes accounting for the magnetic fluctuations in two spatial dimensions. The interfacial Dzyaloshinskii-Moriya interaction naturally arises in magnetic interactions due to the absence of inversion symmetry, resulting in a degenerate contour for the low-energy bosonic modes in the momentum space which simultaneously becomes critical near the magnetic phase transition. The itinerant electrons are scattered by the critical boson contour via the Yukawa coupling. When the boson contour is much smaller than the Fermi surface, it is shown that, there exists a regime with a dynamic critical exponent z=3 while the boson contour still controls the low-energy magnetic fluctuations. Using a self-consistent renormalization calculation for this regime, we uncover a prominent non-Fermi liquid behavior in the resistivity with a characteristic temperature scaling power. These findings open up new avenues for understanding boson-fermion interactions and the novel fermionic quantum criticality.Comment: 17 pages(with Appendix), 7 figure

    The System Dynamics Model in Electronic Products Closed-Loop Supply Chain Distribution Network with Three-Way Recovery and the Old-for-New Policy

    Get PDF
    With the technological developments and rapid changes in demand pattern, diverse varieties of electronic products are entering into the market with reduced lifecycle which leads to the environmental problems. The awareness of electronic products take-back and recovery has been increasing in electronic products supply chains. In this paper, we build a system dynamics model for electronic products closed-loop supply chain distribution network with the old-for-new policy and three electronic products recovery ways, namely, electronic products remanufacturing, electronic component reuse and remanufacturing, and electronic raw material recovery. In the simulation study, we investigate the significance of various factors including the old-for-new policy, collection and remanufacturing, their interactions and the type of their impact on bullwhip, and profitability through sensitivity analysis. Our results instruct that the old-for-new policy and three electronic products recovery ways can reduce the bullwhip effect in the retailers and the distributors and increases the profitability in the closed-loop supply chain distribution network
    • …
    corecore