22,294 research outputs found

    On the nature of the lightest scalar resonances

    Full text link
    We briefly review the recent progresses in the new unitarization approach being developed by us. Especially we discuss the large NcN_c ππ\pi\pi scatterings by making use of the partial wave SS matrix parametrization form. We find that the σ\sigma pole may move to the negative real axis on the second sheet of the complex ss plane, therefore it raises the interesting question that this `σ\sigma' pole may be related to the σ\sigma in the linear σ\sigma model.Comment: Talk presented by Zheng at ``Quark Confinement and Hadron Spectroscopy VI'', 21--25 Sept. 2004, Cagliari, Italy. 3 pages with 2 figure

    A new class of (2+1)(2+1)-d topological superconductor with Z8\mathbb{Z}_8 topological classification

    Full text link
    The classification of topological states of matter depends on spatial dimension and symmetry class. For non-interacting topological insulators and superconductors the topological classification is obtained systematically and nontrivial topological insulators are classified by either integer or Z2Z_2. The classification of interacting topological states of matter is much more complicated and only special cases are understood. In this paper we study a new class of topological superconductors in (2+1)(2+1) dimensions which has time-reversal symmetry and a Z2\mathbb{Z}_2 spin conservation symmetry. We demonstrate that the superconductors in this class is classified by Z8\mathbb{Z}_8 when electron interaction is considered, while the classification is Z\mathbb{Z} without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur

    Excitation of nonlinear ion acoustic waves in CH plasmas

    Full text link
    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number kλDe k\lambda_{De} increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of Ti/Te<0.2 T_i/T_e < 0.2 in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with kλDek\lambda_{De} increasing. When kλDek\lambda_{De} is not large, such as kλDe=0.1,0.3,0.5k\lambda_{De}=0.1, 0.3, 0.5, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when kλDek\lambda_{De} is large, such as kλDe=0.7k\lambda_{De}=0.7, the linear frequency can not be applied to exciting the nonlinear IAW, while the frequency calculated by the dispersion relation with no damping can be applied to exciting the nonlinear IAW.Comment: 10 pages, 9 figures, Accepted by POP, Publication in August 1

    Equation of motion for multiqubit entanglement in multiple independent noisy channels

    Full text link
    We investigate the possibility and conditions to factorize the entanglement evolution of a multiqubit system passing through multi-sided noisy channels. By means of a lower bound of concurrence (LBC) as entanglement measure, we derive an explicit formula of LBC evolution of the N-qubit generalized Greenberger-Horne-Zeilinger (GGHZ) state under some typical noisy channels, based on which two kinds of factorizing conditions for the LBC evolution are presented. In this case, the time-dependent LBC can be determined by a product of initial LBC of the system and the LBC evolution of a maximally entangled GGHZ state under the same multi-sided noisy channels. We analyze the realistic situations where these two kinds of factorizing conditions can be satisfied. In addition, we also discuss the dependence of entanglement robustness on the number of the qubits and that of the noisy channels.Comment: 14 page

    Controlling soliton interactions in Bose-Einstein condensates by synchronizing the Feshbach resonance and harmonic trap

    Full text link
    We present how to control interactions between solitons, either bright or dark, in Bose-Einstein condensates by synchronizing Feshbach resonance and harmonic trap. Our results show that as long as the scattering length is to be modulated in time via a changing magnetic field near the Feshbach resonance, and the harmonic trapping frequencies are also modulated in time, exact solutions of the one-dimensional nonlinear Schr\"{o}dinger equation can be found in a general closed form, and interactions between two solitons are modulated in detail in currently experimental conditions. We also propose experimental protocols to observe the phenomena such as fusion, fission, warp, oscillation, elastic collision in future experiments.Comment: 7 pages, 7 figure

    Improving traceability and transparency of table grapes cold chain logistics by integrating WSN and correlation analysis

    Get PDF
    Effective and efficient measurement and determination of critical quality parameter(s) is the key to improve the traceability and transparency of the table grapes quality as well as the sustainability performance of the table grapes cold chain logistics, and ensure the table grapes quality and safety. This paper is to determine the critical quality parameter(s) in the cold chain logistics through the real time monitoring of the temperature fluctuation implemented with the Wireless Sensor Network (WSN), and the correlation analysis among the various quality parameters. The assessment was conducted through three experiments. Experiment I indicated that the temperature have a large fluctuation from 0 °C to 30 °C, and the critical temperatures could be determined as 0 °C, 5 °C, 10 °C, 15 °C, 20 °C, 25 °C and 30 °C. Experiment II described that the firmness and moisture loss rate, whose Pearson correlation coefficient with the sensory evaluation were all greater than 0.9 at the critical temperatures determined in Experiment I, could be the critical quality parameters. Experiment III illustrated that the critical quality parameters, firmness and moisture loss rate, could be reliable indicators of table grapes quality by the Arrhenius kinetic equation, and results showed that the evaluation model based on the firmness is better to predict the shelf life than that based on the moisture loss rate. The best quality table grapes could be provided for the consumers via the easily and directly tracing and controlling the critical quality parameters in real time in actual cold chain logistics.National Natural Science Foundation of Chin
    • …
    corecore