93 research outputs found

    Effects of Chinese domestic polychlorinated biphenyls (PCBs) on gonadal differentiation in Xenopus laevis.

    Get PDF
    To determine whether polychlorinated biphenyls (PCBs) influence gonadal differentiation in Xenopus laevis, tadpoles were exposed to two Chinese domestic PCBs (PCB3 and PCB5 from Nieuwkoop and Faber stage 46/47 to complete metamorphosis. Gonads were characterized using a dissecting microscope. The control X. laevis had normal ovaries or testes in gross morphology, whereas obviously abnormal testes including ovotestes were found in PCB3- and PCB5-exposed groups. Ovotestes were characterized by morphologic ovaries in the cranial and caudal parts and morphologic testes in the middle part. PCBs did not alter the percentage of females but reduced the percentage of males with morphologically normal testes. The histologic structure of gonads was examined by a series of sections. Morphologically normal and abnormal testes from a few frogs exposed to PCBs were interspersed with oocytes in histologic sections. These testes exhibited looser structure with fewer seminiferous tubes, spermatogonia, and spermatozoa than in controls. The findings suggest that PCB3 and PCB5 have significant feminization effects on gonadal differentiation in X. laevis and that this species is sensitive to endocrine disruption and may be used as a good model to study endocrine disruption

    Protective Effects of Li-Fei-Xiao-Yan Prescription on Lipopolysaccharide-Induced Acute Lung Injury via Inhibition of Oxidative Stress and the TLR4/NF- κ

    Get PDF
    Li-Fei-Xiao-Yan prescription (LFXY) has been clinically used in China to treat inflammatory and infectious diseases including inflammatory lung diseases. The present study was aimed at evaluating the potential therapeutic effects and potential mechanisms of LFXY in a murine model of lipopolysaccharide- (LPS-) induced acute lung injury (ALI). In this study, the mice were orally pretreated with LFXY or dexamethasone (positive drug) before the intratracheal instillation of LPS. Our data indicated that pretreatment with LFXY enhanced the survival rate of ALI mice, reversed pulmonary edema and permeability, improved LPS-induced lung histopathology impairment, suppressed the excessive inflammatory responses via decreasing the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokine (MIP-2) and inhibiting inflammatory cells migration, and repressed oxidative stress through the inhibition of MPO and MDA contents and the upregulation of antioxidants (SOD and GSH) activities. Mechanistically, treatment with LFXY significantly prevented LPS-induced TLR4 expression and NF-κB (p65) phosphorylation. Overall, the present study suggests that LFXY protected mice from acute lung injury induced by LPS via inhibition of TLR4/NF-κB p65 activation and upregulation of antioxidative enzymes and it may be a potential preventive and therapeutic agent for ALI in the clinical setting

    Interleukin 17A deficiency alleviates neuroinflammation and cognitive impairment in an experimental model of diabetic encephalopathy

    No full text
    Interleukin 17A (IL-17A) was previously shown to be a key pro-inflammatory factor in diabetes mellitus and associated complications. However, the role of IL-17A in diabetic encephalopathy remains poorly understood. In this study, we established a mouse model of diabetic encephalopathy that was deficient in IL-17A by crossing Il17a–/– mice with spontaneously diabetic Ins2Akita (Akita) mice. Blood glucose levels and body weights were monitored from 2–32 weeks of age. When mice were 32 weeks of age, behavioral tests were performed, including a novel object recognition test for assessing short-term memory and learning and a Morris water maze test for evaluating hippocampus-dependent spatial learning and memory. IL-17A levels in the serum, cerebrospinal fluid, and hippocampus were detected with enzyme-linked immunosorbent assays and real-time quantitative polymerase chain reaction. Moreover, proteins related to cognitive dysfunction (amyloid precursor protein, β-amyloid cleavage enzyme 1, p-tau, and tau), apoptosis (caspase-3 and -9), inflammation (inducible nitric oxide synthase and cyclooxygenase 2), and occludin were detected by western blot assays. Pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interferon-γ in serum and hippocampal tissues were measured by enzyme-linked immunosorbent assays. Microglial activation and hippocampal neuronal apoptosis were detected by immunofluorescent staining. Compared with that in wild-type mice, mice with diabetic encephalopathy had higher IL-17A levels in the serum, cerebrospinal fluid, and hippocampus; downregulation of occludin expression; lower cognitive ability; greater loss of hippocampal neurons; increased microglial activation; and higher expression of inflammatory factors in the serum and hippocampus. IL-17A knockout attenuated the abovementioned changes in mice with diabetic encephalopathy. These findings suggest that IL-17A participates in the pathological process of diabetic encephalopathy. Furthermore, IL-17A deficiency reduces diabetic encephalopathy-mediated neuroinflammation and cognitive defects. These results highlight a role for IL-17A as a mediator of diabetic encephalopathy and potential target for the treatment of cognitive impairment induced by diabetic encephalopathy

    Heptazine-Based Porous Framework for Selective CO 2

    No full text

    Clinical Significance of UGT1A1 Genetic Analysis in Chinese Neonates with Severe Hyperbilirubinemia

    Get PDF
    Neonatal hyperbilirubinemia is common in Asia, and the importance of genetically determined conditions has been recently recognized. The aim of this study was to assess the clinical utility of genetic testing in Chinese neonates with severe hyperbilirubinemia. Methods: Fifty-eight term infants with bilirubin level ≥ 20 mg/dL (342 μmol/L), and 65 controls were enrolled in the study. Variation status of UGT1A1, G6PD, and thalassemia genes in our study cohort was determined by direct sequencing or genotype assays. Results: Among these case infants, seven were confirmed with G6PD deficiency, four were heterozygous for α- or β-thalassemia, and forty-four were detected with at least one heterozygous UGT1A1 functional variant, including nine homozygous for UGT1A1 variation. As well as the predominant c.211G>A (Gly71Arg) variant, three UGT1A1 coding variants [c.1091C>T (Pro364Leu), c.1352C>T (pro451leu), and c.1456C>T (Tyr486Asp)] were observed in our case neonates. The results of multivariate logistic regressions, adjusted for covariates, revealed odds ratios for neonates who carried heterozygous, homozygous variation at nucleotide 211 of UGT1A1, and G6PD deficiency of 3.47 (1.26–9.55), 12.46 (1.09–142.7) ,and 12.87 (1.32–135.87) compared with those having the wild genotype and normal G6PD activity, respectively. Conclusion: Besides G6PD-deficiency screening, UGT1A1 genetic analysis, and especially the UGT1A1*6(c.211G>A, p.Arg71Gly) polymorphism detection, may be taken into consideration for early diagnosis and treatment of severe hyperbilirubinemic newborns in southern China
    • …
    corecore