6 research outputs found

    Testing the effect of varying environments on the speed of evolution

    No full text
    One of the most important tasks in computer science and artificial intelligence is optimization. Computer scientists use simulation of natural evolution to create algorithms and data structures to solve complex optimization problems. This field of study is called evolutionary computation. In evolutionary computation, the speed of evolution is defined as the number of generations needed for an initially random population to achieve a given goal. Recent studies have shown that varying environments might significantly speed up evolution, and suggested modularly varying goals can accelerate optimization algorithms. In this thesis, we study the effect of varying goals on the speed of evolution. Two test models, the NK model and the midunitation model, are used for this study. Three different evolutionary algorithms are used to test the hypothesis. Statistical analyses of the results showed that under NK model, evolution with fixed goal is faster than evolution with switching goals. Under midunitation model, different algorithms lead to different results. With some string lengths using hill climbing, switching goals sped up evolution. With other string lengths using hill climbing, and using the other evolutionary algorithms, either evolution with a fixed goal was faster or results were inconclusive

    Regional Ground Surface Mass Variations Inversed by Radial Point-mass Model Method with Spatial Constraints

    No full text
    Radial point-mass model method is the disturbance gravity downward continuation in essence, which is an ill-posed problem. In general, the regularization method is an efficient way to get the reliable solution. To solve this problem, the radial point-mass model method is improved by using Helmert variance component estimation with adding spatial constraints from a practical point of view. Taking South America continent as study area, radial point-mass model method with spatial constraints is verified by experimental results. The experiments results show that the condition number of normal equations is decreasing obviously after adding spatial constraints. The inversion results of radial point-mass model method with spatial constraints are consistent with results of other methods. Furthermore, the radial point-mass model method with spatial constraints provides an alternative way to monitor regional surface mass variations by satellite gravimetry
    corecore