34 research outputs found

    The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord

    Get PDF
    Although the adult mammalian spinal cord lacks intrinsic neurogenic capacity, glial cells can be reprogrammed in vivo to generate neurons after spinal cord injury (SCI). How this reprogramming process is molecularly regulated, however, is not clear. Through a series of in vivo screens, we show here that the p53-dependent pathway constitutes a critical checkpoint for SOX2-mediated reprogramming of resident glial cells in the adult mouse spinal cord. While it has no effect on the reprogramming efficiency, the p53 pathway promotes cell-cycle exit of SOX2-induced adult neuroblasts (iANBs). As such, silencing of either p53 or p21 markedly boosts the overall production of iANBs. A neurotrophic milieu supported by BDNF and NOG can robustly enhance maturation of these iANBs into diverse but predominantly glutamatergic neurons. Together, these findings have uncovered critical molecular and cellular checkpoints that may be manipulated to boost neuron regeneration after SCI

    Piezo-photoelectronic coupling effect of BaTiO<sub>3</sub>@TiO<sub>2</sub> nanowires for highly concentrated dye degradation

    Get PDF
    The induced built-in electric field by piezoelectric materials has proven to be one of the most effective strategies for modulating the charge-transfer pathway and inhibiting carrier recombination. In this work, a series of core-shell structured BaTiO3@TiO2 nanowires (BT@TiO2 NWs) heterojunctions were synthesized and the significant coupling effects between BaTiO3 (BT) and TiO2 resulted in surperior piezo-photocatalytic performance, which was demonstrated by three typical types of dyes with high concentrations. The degradation efficiency of 30 mg/L Rhodamine B (RhB), Methylene blue (MB) and Indigo Carmine (IC) solutions by 0.5 g/L BT@TiO2 NWs reached 99.5% in 75 min, 99.8% in 105 min and 99.7% in 45 min, respectively, which are much higher than piezo-photocatalysis systems reported before. To reveal the coupling mechanisms, photoelectrochemical measurements and band diagram analysis were carried out. The carrier concentration was increased from 2.28 × 1017 cm−3 to 4.91 × 1018 cm−3 and the lifetime of charges was improved from 50.37 ms to 60.98 ms due to the construction of a heterojunction between TiO2 and BT. It was proposed that the tilting and bending of the energy band caused by the introduction of a piezoelectric polarization can facilitate carrier separation both in the bulk phase and at the surfaces of semiconductors, resulting in outstanding piezo-photocatalytic properties for highly concentrated dye degradation. This work provides a universal catalyzer for highly concentrated dye degradation.</p

    Evaluation of the pore morphologies for piezoelectric energy harvesting application

    Get PDF
    Piezoelectric energy harvesting has attracted significant attention in recent years due to their high-power density and potential applications for self-powered sensor networks. In comparison to dense piezoelectric ceramics, porous piezoelectric ceramics exhibit superiority due to an enhancement of piezoelectric energy harvesting figure of merit. This paper provides a detailed examination of the effect of pore morphology on the piezoelectric energy harvesting performance of porous barium calcium zirconate titanate 0.5Ba(Zr0.2 Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT) ceramics. Three different pore morphologies of spherical, elliptical, and aligned lamellar pores were created via the burnt-out polymer spheres method and freeze casting. The relative permittivity decreased with increasing porosity volume fraction for all porous BCZT ceramics. Both experimental and simulation results demonstrate that porous BCZT ceramics with aligned lamellar pores exhibit a higher remanent polarization. The longitudinal d33 piezoelectric charge coefficient decreased with increasing porosity volume fraction for the porous ceramics with three different pore morphologies; however, the rate of decrease in d33 with porosity is slower for aligned lamellar pores, leading to the highest piezoelectric energy harvesting figure of merit. Moreover, the peak power density of porous BCZT ceramics with aligned lamellar pores is shown to reach up to 38 μW cm-2 when used as an energy harvester, which is significantly higher than that of porous BCZT ceramics with spherical or elliptical pores. This work is beneficial for the design and manufacture of porous ferroelectric materials in devices for piezoelectric energy harvesting applications.</p

    3D-Printed Flexible PVDF-TrFE Composites with Aligned BCZT Nanowires and Interdigital Electrodes for Piezoelectric Nanogenerator Applications

    Get PDF
    Piezoelectric nanogenerators based on piezoelectric nanocomposites have attracted much interest in recent decades owing to their excellent piezoelectric properties and application in self-powered systems and wearable sensors. As a promising piezoelectric ceramic filler in composite-based generators, one-dimensional (1D) piezoelectric nanowires were filled into a polymer matrix to enhance its dielectric and piezoelectric properties. In this paper, flexible PVDF-TrFE composite films containing highly aligned Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) nanowires (NWs) have been manufactured via a direct-ink writing method. The effect of BCZT NW content on the dielectric, ferroelectric, and piezoelectric properties was investigated using multiphysics modeling and detailed experiments. An optimum composite composition was discovered, and the piezoelectric composite film with 15 wt % BCZT NWs possessed the highest energy harvesting figure of merit of 5.3 × 10-12 m2/N. Interdigital electrodes were combined with the composite to fabricate a patterned piezoelectric nanogenerator, where the piezoelectric nanogenerator can produce an open-circuit output voltage of 17 V, and the maximum output power density could reach 5.6 μW/cm2. This work provides opportunities for the optimization and fabrication of piezoelectric materials for energy-harvesting and sensing applications.</p

    3D-Printed Flexible PVDF-TrFE Composites with Aligned BCZT Nanowires and Interdigital Electrodes for Piezoelectric Nanogenerator Applications

    Get PDF
    Piezoelectric nanogenerators based on piezoelectric nanocomposites have attracted much interest in recent decades owing to their excellent piezoelectric properties and application in self-powered systems and wearable sensors. As a promising piezoelectric ceramic filler in composite-based generators, one-dimensional (1D) piezoelectric nanowires were filled into a polymer matrix to enhance its dielectric and piezoelectric properties. In this paper, flexible PVDF-TrFE composite films containing highly aligned Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) nanowires (NWs) have been manufactured via a direct-ink writing method. The effect of BCZT NW content on the dielectric, ferroelectric, and piezoelectric properties was investigated using multiphysics modeling and detailed experiments. An optimum composite composition was discovered, and the piezoelectric composite film with 15 wt % BCZT NWs possessed the highest energy harvesting figure of merit of 5.3 × 10-12 m2/N. Interdigital electrodes were combined with the composite to fabricate a patterned piezoelectric nanogenerator, where the piezoelectric nanogenerator can produce an open-circuit output voltage of 17 V, and the maximum output power density could reach 5.6 μW/cm2. This work provides opportunities for the optimization and fabrication of piezoelectric materials for energy-harvesting and sensing applications.</p

    Enhanced energy harvesting performance in lead-free multi-layer piezoelectric composites with a highly aligned pore structure

    Get PDF
    The harvesting of mechanical energy from our living environment via piezoelectric energy harvesters to provide power for next generation wearable electronic devices and sensors has attracted significant interest in recent years. Among the range of available piezoelectric materials, porous piezoelectric ceramics exhibit potential for both sensing and energy harvesting applications due to their reduced relative permittivity and enhanced piezoelectric sensing and energy harvesting figures of merit. Despite these developments, the low output power density and the lack of optimized structural design continues to restrict their application. Here, to overcome these challenges, a lead-free multi-layer porous piezoelectric composite energy harvester with a highly aligned pore structure and three-dimensional intercalation electrodes is proposed, fabricated and characterized. The effect of material structure and multi-layer configuration of the porous piezoelectric ceramic on the dielectric properties, piezoelectric response and energy harvesting performance was investigated in detail. Since the relative permittivity is significantly reduced due to the introduction of aligned porosity within the multi-layer structure, the piezoelectric voltage coefficient, energy harvesting figure of merit and output power are greatly enhanced. The multi-layer porous piezoelectric composite energy harvester is shown to generate a maximum output current of 80 μA, with a peak power density of 209 μW cm−2, which is significantly higher than other porous piezoelectric materials reported to date. Moreover, the generated power can charge a 10 μF capacitor from 0 V to 4.0 V in 150 s. This work therefore provides a new strategy for the design and manufacture of porous piezoelectric materials for piezoelectric sensing and energy harvesting applications.</p

    Enhanced energy harvesting performance in lead-free multi-layer piezoelectric composites with a highly aligned pore structure

    Get PDF
    The harvesting of mechanical energy from our living environment via piezoelectric energy harvesters to provide power for next generation wearable electronic devices and sensors has attracted significant interest in recent years. Among the range of available piezoelectric materials, porous piezoelectric ceramics exhibit potential for both sensing and energy harvesting applications due to their reduced relative permittivity and enhanced piezoelectric sensing and energy harvesting figures of merit. Despite these developments, the low output power density and the lack of optimized structural design continues to restrict their application. Here, to overcome these challenges, a lead-free multi-layer porous piezoelectric composite energy harvester with a highly aligned pore structure and three-dimensional intercalation electrodes is proposed, fabricated and characterized. The effect of material structure and multi-layer configuration of the porous piezoelectric ceramic on the dielectric properties, piezoelectric response and energy harvesting performance was investigated in detail. Since the relative permittivity is significantly reduced due to the introduction of aligned porosity within the multi-layer structure, the piezoelectric voltage coefficient, energy harvesting figure of merit and output power are greatly enhanced. The multi-layer porous piezoelectric composite energy harvester is shown to generate a maximum output current of 80 μA, with a peak power density of 209 μW cm−2, which is significantly higher than other porous piezoelectric materials reported to date. Moreover, the generated power can charge a 10 μF capacitor from 0 V to 4.0 V in 150 s. This work therefore provides a new strategy for the design and manufacture of porous piezoelectric materials for piezoelectric sensing and energy harvesting applications.</p

    A (Bi<sub>2</sub>O<sub>2</sub>)<sup>2+</sup> layer as a significant carrier generator and transmission channel in CaBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> platelets for enhanced piezo-photo-catalytic performance

    Get PDF
    The low photocatalytic conversion efficiency, poor light absorption and high charge recombination rate of traditional semiconductor photocatalysts continues to be a significant research challenge. In this paper, by combining detailed experimental and modeling techniques, we report on the unique potential of CaBi2Nb2O9 (CBN) platelets that can couple both piezo- and photo- multi-field effects to overcome these issues and realize high-efficiency hydrogen production and dye degradation. The surface adsorption of OH− and dye molecules is improved as a result of the built-in electric field, thereby demonstrating an enhanced piezo- and photo-catalytic H2 production activity, with a high rate of 96.83 μmol g−1 h−1. The piezo-photocatalytic decomposition ratio for 100 mL RhB dye of 10 mg/L can reach up to 98.7 % in 32 min using only 0.05 mg of CBN platelets (k = 0.131 min−1). It is shown that the careful introduction of regularly arranged layers of (Bi2O2)2+ into the CBN platelet structure provides a high transport of photoelectrons via a pathway of (Bi2O2)2+ → (CaNb2O7)2− → CBN surface. The electron density distribution of Bi atoms is also found to be enriched on the facets of (020) and (200) crystal planes in the CBN platelets, which is beneficial to the oxidation reduction reaction. Furthermore, the large deformation of CBN platelet during the application of ultrasound leads to an increase of the piezo-induced built-in electric field to improve charge separation and migration. This work therefore provides a new perspective in the design and manufacture of advanced materials with enhanced piezo- and photo-catalytic performance by exploiting multi-field coupling effects.</p

    Flexible PVDF-TrFE Nanocomposites with Ag-decorated BCZT Heterostructures for Piezoelectric Nanogenerator Applications

    Get PDF
    Flexible piezoelectric nanogenerators are playing an important role in delivering power to next-generation wearable electronic devices due to their high-power density and potential to create self-powered sensors for the Internet of Things. Among the range of available piezoelectric materials, poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)-based piezoelectric composites exhibit significant potential for flexible piezoelectric nanogenerator applications. However, the high electric fields that are required for poling cannot be readily applied to polymer composites containing piezoelectric fillers due to the high permittivity contrast between the filler and matrix, which reduces the dielectric strength. In this paper, novel Ag-decorated BCZT heterostructures were synthesized via a photoreduction method, which were introduced at a low level (3 wt %) into the matrix of PVDF-TrFE to fabricate piezoelectric composite films. The effect of Ag nanoparticle loading content on the dielectric, ferroelectric, and piezoelectric properties was investigated in detail, where a maximum piezoelectric energy-harvesting figure of merit of 5.68 × 10-12 m2/N was obtained in a 0.04Ag-BCZT NWs/PVDF-TrFE composite film, where 0.04 represents the concentration of the AgNO3 solution. Modeling showed that an optimum performance was achieved by tailoring the fraction and distribution of the conductive silver nanoparticles to achieve a careful balance between generating electric field concentrations to increase the level of polarization, while not degrading the dielectric strength. This work therefore provides a strategy for the design and manufacture of highly polarized piezoelectric composite films for piezoelectric nanogenerator applications.</p

    A (Bi<sub>2</sub>O<sub>2</sub>)<sup>2+</sup> layer as a significant carrier generator and transmission channel in CaBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> platelets for enhanced piezo-photo-catalytic performance

    Get PDF
    The low photocatalytic conversion efficiency, poor light absorption and high charge recombination rate of traditional semiconductor photocatalysts continues to be a significant research challenge. In this paper, by combining detailed experimental and modeling techniques, we report on the unique potential of CaBi2Nb2O9 (CBN) platelets that can couple both piezo- and photo- multi-field effects to overcome these issues and realize high-efficiency hydrogen production and dye degradation. The surface adsorption of OH− and dye molecules is improved as a result of the built-in electric field, thereby demonstrating an enhanced piezo- and photo-catalytic H2 production activity, with a high rate of 96.83 μmol g−1 h−1. The piezo-photocatalytic decomposition ratio for 100 mL RhB dye of 10 mg/L can reach up to 98.7 % in 32 min using only 0.05 mg of CBN platelets (k = 0.131 min−1). It is shown that the careful introduction of regularly arranged layers of (Bi2O2)2+ into the CBN platelet structure provides a high transport of photoelectrons via a pathway of (Bi2O2)2+ → (CaNb2O7)2− → CBN surface. The electron density distribution of Bi atoms is also found to be enriched on the facets of (020) and (200) crystal planes in the CBN platelets, which is beneficial to the oxidation reduction reaction. Furthermore, the large deformation of CBN platelet during the application of ultrasound leads to an increase of the piezo-induced built-in electric field to improve charge separation and migration. This work therefore provides a new perspective in the design and manufacture of advanced materials with enhanced piezo- and photo-catalytic performance by exploiting multi-field coupling effects.</p
    corecore