122 research outputs found

    A global portrait of expressed mental health signals towards COVID-19 in social media space

    Full text link
    Globally, the COVID-19 pandemic has induced a mental health crisis. Social media data offer a unique oppor- tunity to track the mental health signals of a given population and quantify their negativity towards COVID-19. To date, however, we know little about how negative sentiments differ across countries and how these relate to the shifting policy landscape experienced through the pandemic. Using 2.1 billion individual-level geotagged tweets posted between 1 February 2020 and 31 March 2021, we track, monitor and map the shifts in negativity across 217 countries and unpack its relationship with COVID-19 policies. Findings reveal that there are important geographic, demographic, and socioeconomic disparities of negativity across continents, different levels of a nation’s income, population density, and the level of COVID-19 infection. Countries with more stringent policies were associated with lower levels of negativity, a relationship that weakened in later phases of the pandemic. This study provides the first global and multilingual evaluation of the public’s real-time mental health signals to COVID-19 at a large spatial and temporal scale. We offer an empirical framework to monitor mental health signals globally, helping international authorizations, including the United Nations and World Health Organi- zation, to design smart country-specific mental health initiatives in response to the ongoing pandemic and future public emergencies

    Room-Temperature entangled quantum processor on integrated semiconductor photonics platform

    Full text link
    The rise of the 4H-silicon-carbide-on-insulator (SiCOI) platform marks a promising pathway towards the realization of monolithic quantum photonic networks. However, the challenge of establishing room-temperature entangled registers on these integrated photonics platforms remains unresolved. Herein, we demonstrate the first entangled processor on the SiCOI platform. We show that both deterministic generation of single divacancy electron spins and near-unity spin initialization of a single 13^{13}C nuclear spin can be achieved on SiCOI at room temperature. Besides coherently manipulating the single nuclear spin, a maximally entangled state with a fidelity of 0.89 has been prepared on this CMOS-compatible semiconductor-integrated photonics system. This work establishes the foundation for compact and on-chip solutions within existing defect-based computing and sensing protocols, positioning the SiCOI platform as the most promising candidate for integrated monolithic quantum photonic networks.Comment: 16 pages, 4 figure

    Two-Dimensional Platinum Telluride with Ordered Te Vacancy Superlattice for Efficient and Robust Hydrogen Evolution

    Full text link
    Defect engineering to activate the basal planes of transition metal dichalcogenides (TMDs) is critical for the development of TMD-based electrocatalysts as the chemical inertness of basal planes restrict their potential applications in hydrogen evolution reaction (HER). Here, we report the synthesis and evaluation of few-layer (7x7)-PtTe2-x with an ordered, well-defined and high-density Te vacancy superlattice. Compared with pristine PtTe2, (2x2)-PtTe2-x and Pt(111), (7x7)-PtTe2-x exhibits superior HER activities in both acidic and alkaline electrolytes due to its rich structures of undercoordinated Pt sites. Furthermore, the (7x7)-PtTe2-x sample features outstanding catalytic stability even compared to the state-of-the-art Pt/C catalyst. Theoretical calculations reveal that the interactions between various undercoordinated Pt sites due to proximity effect can provide superior undercoordinated Pt sites for hydrogen adsorption and water dissociation. This work will enrich the understanding of the relationship between defect structures and electrocatalytic activities and provide a promising route to develop efficient Pt-based TMD electrocatalysts

    Rapid detection of micronutrient components in infant formula milk powder using near-infrared spectroscopy

    Get PDF
    In order to achieve rapid detection of galactooligosaccharides (GOS), fructooligosaccharides (FOS), calcium (Ca), and vitamin C (Vc), four micronutrient components in infant formula milk powder, this study employed four methods, namely Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), Normalization (Nor), and Savitzky–Golay Smoothing (SG), to preprocess the acquired original spectra of the milk powder. Then, the Competitive Adaptive Reweighted Sampling (CARS) algorithm and Random Frog (RF) algorithm were used to extract representative characteristic wavelengths. Furthermore, Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR) models were established to predict the contents of GOS, FOS, Ca, and Vc in infant formula milk powder. The results indicated that after SNV preprocessing, the original spectra of GOS and FOS could effectively extract feature wavelengths using the CARS algorithm, leading to favorable predictive results through the CARS-SVR model. Similarly, after MSC preprocessing, the original spectra of Ca and Vc could efficiently extract feature wavelengths using the CARS algorithm, resulting in optimal predictive outcomes via the CARS-SVR model. This study provides insights for the realization of online nutritional component detection and optimization control in the production process of infant formula

    Willingness to Accept HIV Pre-Exposure Prophylaxis among Chinese Men Who Have Sex with Men

    Get PDF
    OBJECTIVE: We investigated the awareness and acceptability of pre-exposure prophylaxis (PrEP) among men who have sex with men (MSM) and potential predicting factors. METHODS: This study was conducted among MSM in Beijing, China. Study participants, randomly selected from an MSM cohort, completed a structured questionnaire, and provided their blood samples to test for HIV infection and syphilis. Univariate logistic regression analyses were performed to evaluate the factors associated with willingness to accept (WTA) PrEP. Factors independently associated with willingness to accept were identified by entering variables into stepwise logistic regression analysis. RESULTS: A total of 152 MSM completed the survey; 11.2% had ever heard of PrEP and 67.8% were willing to accept it. Univariate analysis showed that age, years of education, consistent condom use in the past 6 months, heterosexual behavior in the past 6 months, having ever heard of PrEP and the side effects of antiretroviral drugs, and worry about antiretroviral drugs cost were significantly associated with willingness to accept PrEP. In the multivariate logistic regression model, only consistent condom use in the past 6 months (odds ratio [OR]: 0.31; 95% confidence interval [CI]: 0.13-0.70) and having ever heard of the side effects of antiretroviral drugs (OR: 0.30; 95% CI: 0.14-0.67) were independently associated with willingness to accept PrEP. CONCLUSIONS: The awareness of PrEP in the MSM population was low. Sexual behavioral characteristics and knowledge about ART drugs may have effects on willingness to accept PrEP. Comprehensive prevention strategies should be recommended in the MSM community

    Deubiquitylase USP7 regulates human terminal erythroid differentiation by stabilizing GATA1

    Get PDF
    Ubiquitination is an enzymatic post-translational modification that affects protein fate. The ubiquitin-proteasome system (UPS) was first discovered in reticulocytes where it plays important roles in reticulocyte maturation. Recent studies have revealed that ubiquitination is a dynamic and reversible process and that deubiquitylases are capable of removing ubiquitin from their protein substrates. Given the fact that the UPS is highly active in reticulocytes, it is speculated that deubiquitylases may play important roles in erythropoiesis. Yet, the role of deubiquitylases in erythropoiesis remains largely unexplored. In the present study, we found that the expression of deubiquitylase USP7 is significantly increased during human terminal erythroid differentiation. We further showed that interfering with USP7 function, either by short hairpin RNA-mediated knockdown or USP7-specific inhibitors, impaired human terminal erythroid differentiation due to decreased GATA1 level and that restoration of GATA1 levels rescued the differentiation defect. Mechanistically, USP7 deficiency led to a decreased GATA1 protein level that could be reversed by proteasome inhibitors. Furthermore, USP7 interacts directly with GATA1 and catalyzes the removal of K48-linked poly ubiquitylation chains conjugated onto GATA1, thereby stabilizing GATA1 protein. Collectively, our findings have identified an important role of a deubiquitylase in human terminal erythroid differentiation by stabilizing GATA1, the master regulator of erythropoiesis
    • …
    corecore