28 research outputs found

    Sintering Preparation of 15 wt% Cr Cast Iron as well as Its Mechanical Properties and Impact Abrasive Wear

    Get PDF
    15 wt% Cr sintered High Chromium Cast Iron (HCCI) with full density was successfully prepared by Super-solidus Liquid Phase Sintering (SPLS) technique, with water atomized 15 wt% Cr high chromium cast iron powder as initial materials. Its densification behavior and microstructure evolution in SPLS process and mechanical properties were investigated systematically. Additionally, the impact abrasive wear resistance under different impact energies were also analyzed and compared with another sintered HCCI with 20 wt% Cr. The results indicated that sintering temperature has a strong influence on the sintered alloy’s density, hardness, impact toughness and bending strength. The M7C3 type (M is Cr and Fe) carbides were obviously coarsened as temperature increased and their rod-shaped branches were fully developed at the same time, thereby resulting in carbide network formation in the matrix. The reasonable sintering temperature range was 1195–1205 Â°C, and the optimum mechanical properties had the hardness of 63.9 HRC, bending strength of 2112.65 MPa and impact toughness of 7.92 J/cm2. What is more important impact abrasive wear test results indicated 15 wt% Cr sintered HCCI’s wear resistance could be comparable to 20 wt% Cr sintered HCCI under impact energy 1~3 J/cm2, and it is more cost effective

    Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock

    No full text
    Industrial hemp hurd (HH) is emerging as a bio-based filler in thermoplastic biocomposites. In this paper, HH/polylactide (PLA) biocomposites were developed as fused deposition modelling (FDM) feedstock through parametric analysis of the effects of HH loading with respect to melt flow, rheology, physical, thermo mechanical, and mechanical properties of the biocomposites. Poly (butylene adipate-co-terephthalate) (PBAT) and ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EGMA) were used as toughening and compatibilisation agents respectively in melt-compounding and extrusion to produce FDM filament. The FDM-printed standard samples were compared against corresponding injection-moulded biocomposites. The FDM filament exhibited a diameter tolerance within ±0.02 mm, and roundness variability below 0.03 mm, and the FDM-printed parts with HH loading under 30 phr showed higher impact toughness than the commercial PLA filament control. In addition, the FDM-printed samples exhibited greater dimensional accuracy with increasing HH loading

    Fixed and Variable Temperature Super-Solidus Liquid Phase Sintering of High Chromium Cast Iron with 25 Wt.%CR and Its Microstructure

    No full text
    A variable temperature super-solidus liquid phase sintering (SLPS) technique is employed in fabrication of high chromium cast iron (HCCI) with 25wt.%Cr to extend its sintering temperature window. Its microstructure evolution, mechanical properties, and abrasive wear behavior are investigated systemically. The results indicate that the variable temperature SLPS can obtain samples with full density plus fine and uniformly distributed carbide particles, and its carbide volume fraction is increased by 4~5% in comparison with the fixed temperature SLPSed one. Meanwhile, its bending strength and impact toughness can be raised by 8.0% and 16.7%, respectively. Finally, the sintering temperature window for variable temperature SLPS of HCCI is extended by 12 °C, reaching 27 °C

    Drilling Path Planning of Rock-Drilling Jumbo Using a Vehicle-Mounted 3D Scanner

    No full text
    Achieving intelligent rock excavation is an important development direction in underground engineering construction. Currently, some rock-drilling jumbos are able to perform autonomous operations under ideal contour surfaces. However, irregular contour surfaces resulting from factors such as rock characteristics, drilling deviation, and blasting effects present a significant challenge for automated drilling under non-ideal surfaces, which constrains the intelligentization of rock excavation. To address this issue, this paper proposes a method for extracting contour surfaces and planning drilling paths based on a vehicle-mounted 3D scanner. This method effectively extracts contour surfaces and optimizes drilling paths, thereby improving work efficiency and safety. Specifically, the proposed method includes: (i) the real-time scanning of cross-sectional contours using a vehicle-mounted 3D scanner to construct an accurate three-dimensional point-cloud model and obtain contour over-digging information; the acquired data are compared with theoretical drilling maps in the vehicle’s coordinate system to re-plan the blasting-hole point set; (ii) the development of a volume-based dynamic search algorithm based on the irregularities of contour surfaces to detect potential collisions between holes; and (iii) the conversion of the drilling sequence planning based on the new blasting hole point set into a traveling salesman problem (TSP), and optimization using a Hybrid Greedy Genetic Algorithm (HGGA) to achieve path traversal of all drilling positions. The effectiveness of the proposed method was verified using rock excavation in a certain mine as an example. The results show that the overall recognition rate of the contour over-digging reached over 80%, the number of arm collisions was significantly reduced, and the distance traveled by the drilling rig was reduced by 35% using the improved genetic algorithm-based rock-drilling rig path planning

    Enhanced toughness of PLLA/PCL blends using poly(d-lactide)-poly(ε-caprolactone)-poly(d-lactide) as compatibilizer

    No full text
    Poly(l-lactide) (PLLA)/poly(ε-caprolactone) (PCL) blends traditionally show low ductility because of the immiscibility between PLLA and PCL. In this study, this ductility challenge was addressed by modifying the compatibility between PLLA and PCL using poly(d-lactide)-poly(ε-caprolactone)-poly(d-lactide) (PDLA-PCL-PDLA or PCDL) tri-block copolymer. PLLA/PCL and PLLA/PCL blends with 0.7 phr and 3.5 phr PCDL were prepared by melt-compounding and extrusion and analyzed. The compatibilized PLLA/PCL blend with 3.5 phr of PCDL exhibited an elongation-at-break of 43%, compared to 18% in uncompatibilized PLLA/PCL, although PLLA/PCL/PCDL3.5 showed the higher crystallinity of 10.0% compared to 3.1% in PLLA baseline. The stereocomplexation effect between PLLA and PDLA was confirmed with a melting peak of a stereocomplex crystallite at 212 °C through differential scanning calorimetry. PCDL compatibilization improved miscibility between PLLA and PCL as evidenced through the interfacial morphology analysis, and supported by the rheological analysis, which elucidated the enhanced melting viscosity and interfacial adhesion of PLLA/PCL. Overall, the compatibilization of PLLA/PCL blends with PCDL was effective in achieving an enhanced interfacial morphology and adhesion, and improved elongation-at-break

    A note on the valence of certain means

    No full text
    corecore