1,460 research outputs found

    A topological approach for segmenting human body shape

    Get PDF
    Segmentation of a 3D human body, is a very challenging problem in applications exploiting human scan data. To tackle this problem, the paper proposes a topological approach based on the discrete Reeb graph (DRG) which is an extension of the classical Reeb graph to handle unorganized clouds of 3D points. The essence of the approach concerns detecting critical nodes in the DRG, thereby permitting the extraction of branches that represent parts of the body. Because the human body shape representation is built upon global topological features that are preserved so long as the whole structure of the human body does not change, our approach is quite robust against noise, holes, irregular sampling, frame change and posture variation. Experimental results performed on real scan data demonstrate the validity of our method

    A discrete Reeb graph approach for the segmentation of human body scans

    Get PDF
    Segmentation of 3D human body (HB) scan is a very challenging problem in applications exploiting human scan data. To tackle this problem, we propose a topological approach based on discrete Reeb graph (DRG) which is an extension of the classical Reeb graph to unorganized cloud of 3D points. The essence of the approach is detecting critical nodes in the DRG thus permitting the extraction of branches that represent the body parts. Because the human body shape representation is built upon global topological features that are preserved so long as the whole structure of the human body does not change, our approach is quite robust against noise, holes, irregular sampling, moderate reference change and posture variation. Experimental results performed on real scan data demonstrate the validity of our method

    Inactivation of BK Channels by the NH2 Terminus of the β2 Auxiliary Subunit: An Essential Role of a Terminal Peptide Segment of Three Hydrophobic Residues

    Get PDF
    An auxiliary β2 subunit, when coexpressed with Slo α subunits, produces inactivation of the resulting large-conductance, Ca2+ and voltage-dependent K+ (BK-type) channels. Inactivation is mediated by the cytosolic NH2 terminus of the β2 subunit. To understand the structural requirements for inactivation, we have done a mutational analysis of the role of the NH2 terminus in the inactivation process. The β2 NH2 terminus contains 46 residues thought to be cytosolic to the first transmembrane segment (TM1). Here, we address two issues. First, we define the key segment of residues that mediates inactivation. Second, we examine the role of the linker between the inactivation segment and TM1. The results show that the critical determinant for inactivation is an initial segment of three amino acids (residues 2–4: FIW) after the initiation methionine. Deletions that scan positions from residue 5 through residue 36 alter inactivation, but do not abolish it. In contrast, deletion of FIW or combinations of point mutations within the FIW triplet abolish inactivation. Mutational analysis of the three initial residues argues that inactivation does not result from a well-defined structure formed by this epitope. Inactivation may be better explained by linear entry of the NH2-terminal peptide segment into the permeation pathway with residue hydrophobicity and size influencing the onset and recovery from inactivation. Examination of the ability of artificial, polymeric linkers to support inactivation suggests that a variety of amino acid sequences can serve as adequate linkers as long as they contain a minimum of 12 residues between the first transmembrane segment and the FIW triplet. Thus, neither a specific distribution of charge on the linker nor a specific structure in the linker is required to support the inactivation process

    On Two-Body Decays of A Scalar Glueball

    Full text link
    We study two body decays of a scalar glueball. We show that in QCD a spin-0 pure glueball (a state only with gluons) cannot decay into a pair of light quarks if chiral symmetry holds exactly, i.e., the decay amplitude is chirally suppressed. However, this chiral suppression does not materialize itself at the hadron level such as in decays into π+π\pi^+\pi^- and K+KK^+K^-, because in perturbative QCD the glueball couples to two (but not one) light quark pairs that hadronize to two mesons. Using QCD factorization based on an effective Lagrangian, we show that the difference of hadronization into ππ\pi\pi and KKKK already leads to a large difference between Br(π+π){\rm Br} (\pi^+\pi^-) and Br(K+K){\rm Br}(K^+K^-), even the decay amplitude is not chirally suppressed. Moreover, the small ratio of R=Br(ππ)/Br(KKˉ)R={\rm Br}(\pi\pi)/{\rm Br}(K\bar K) of f0(1710)f_0(1710) measured in experiment does not imply f0(1710)f_0(1710) to be a pure glueball. With our results it is helpful to understand the partonic contents if Br(ππ){\rm Br}(\pi\pi) or Br(KKˉ){\rm Br}(K\bar K) is measured reliably.Comment: revised versio

    Some properties of the newly observed X(1835) state at BES

    Full text link
    Recently the BES collaboration has announced observation of a resonant state in the π+πη\pi^+\pi^- \eta' spectrum in J/ψγπ+πηJ/\psi \to \gamma \pi^+\pi^-\eta' decay. Fitting the data with a 0+0^{-+} state, the mass is determined to be 1833.7 MeV with 7.7σ7.7\sigma statistic significance. This state is consistent with the one extracted from previously reported ppˉp \bar p threshold enhancement data in J/ψγppˉJ/\psi \to \gamma p \bar p. We study the properties of this state using QCD anomaly and QCD sum rules assuming X(1835) to be a pseudoscalar and show that it is consistent with data. We find that this state has a sizeable matrix element leading to branching ratios of (2.617.37)×103(2.61\sim 7.37)\times 10^{-3} and (2.2110.61)×102(2.21\sim 10.61)\times 10^{-2} for J/ψγGpJ/\psi \to \gamma G_p and for Gpπ+πηG_p \to \pi^+\pi^- \eta', respectively. Combining the calculated branching ratio of J/ψγGpJ/\psi \to \gamma G_p and data on threshold enhancement in J/ψγppˉJ/\psi \to \gamma p \bar p, we determine the coupling for GpppˉG_p- p-\bar p interaction. We finally study branching ratios of other J/ψγ+threemesonsJ/\psi \to \gamma + {three mesons} decay modes. We find that J/ψγGpγ(π+πη,KKπ0)J/\psi \to \gamma G_p \to \gamma (\pi^+\pi^- \eta, K K \pi^0) can provide useful tests for the mechanism proposed.Comment: 13 pages, 3 figures. The final version to appear at EPJ

    Sequence and annotation of the 288-kb ATCV-1 virus that infects an endosymbiotic chlorella strain of the heliozoon \u3ci\u3eAcanthocystis turfacea\u3c/i\u3e

    Get PDF
    Acanthocystis turfacea chlorella virus (ATCV-1), a prospective member of the family Phycodnaviridae, genus Chlorovirus, infects a unicellular, eukaryotic, chlorella-like green alga, Chlorella SAG 3.83, that is a symbiont in the heliozoon A. turfacea. The 288,047-bp ATCV-1 genome is the first virus to be sequenced that infects Chlorella SAG 3.83. ATCV-1 contains 329 putative protein-encoding and 11 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands and intergenic space is minimal. Thirty-four percent of the viral gene products resemble entries in the public databases, including some that are unexpected for a virus. For example, these unique gene products include ribonucleoside-triphosphate reductase, dTDP-D-glucose 4,6 dehydratase, potassium ion transporter, aquaglyceroporin, and mucindesulfating sulfatase. Comparison of ATCV-1 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that about 80% of the ATCV-1 genes are present in PBCV-1

    Vanishing Viscous Limits for 3D Navier-Stokes Equations with A Navier-Slip Boundary Condition

    Full text link
    In this paper, we investigate the vanishing viscosity limit for solutions to the Navier-Stokes equations with a Navier slip boundary condition on general compact and smooth domains in R3\mathbf{R}^3. We first obtain the higher order regularity estimates for the solutions to Prandtl's equation boundary layers. Furthermore, we prove that the strong solution to Navier-Stokes equations converges to the Eulerian one in C([0,T];H1(Ω))C([0,T];H^1(\Omega)) and L^\infty((0,T)\times\o), where TT is independent of the viscosity, provided that initial velocity is regular enough. Furthermore, rates of convergence are obtained also.Comment: 45page

    B_c meson rare decays in the light-cone quark model

    Full text link
    We investigate the rare decays BcDs(1968)ˉB_c \rightarrow D_s(1968) \ell \bar{\ell} and BcDs(2317)ˉB_c\rightarrow D_s^*(2317) \ell \bar{\ell} in the framework of the light-cone quark model (LCQM). The transition form factors are calculated in the space-like region and then analytically continued to the time-like region via exponential parametrization. The branching ratios and longitudinal lepton polarization asymmetries (LPAs) for the two decays are given and compared with each other. The results are helpful to investigating the structure of BcB_c meson and to testing the unitarity of CKM quark mixing matrix. All these results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ

    Fermionic partner of Quintessence field as candidate for dark matter

    Full text link
    Quintessence is a possible candidate for dark energy. In this paper we study the phenomenologies of the fermionic partner of Quintessence, the Quintessino. Our results show that, for suitable choices of the model parameters, the Quintessino is a good candidate for cold or warm dark matter. In our scenario, dark energy and dark matter of the Universe are connected in one chiral superfield.Comment: 4 pages, 3 figures, version to appear in PR
    corecore