62 research outputs found

    From fire whirls to blue whirls and combustion with reduced pollution.

    Get PDF
    Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation. We show the transition from a pool fire, to a fire whirl, and then to a previously unobserved state, a "blue whirl." A blue whirl is smaller, very stable, and burns completely blue as a hydrocarbon flame, indicating soot-free burning. The combination of fast mixing, intense swirl, and the water-surface boundary creates the conditions leading to nearly soot-free combustion. With the worldwide need to reduce emissions from both wanted and unwanted combustion, discovery of this state points to possible new pathways for reduced-emission combustion and fuel-spill cleanup. Because current methods to generate a stable vortex are difficult, we also propose that the blue whirl may serve as a research platform for fundamental studies of vortices and vortex breakdown in fluid mechanics

    Uplink Performance of Cell-Free Extremely Large-Scale MIMO Systems

    Full text link
    In this paper, we investigate the uplink performance of cell-free (CF) extremely large-scale multiple-input-multipleoutput (XL-MIMO) systems, which is a promising technique for future wireless communications. More specifically, we consider the practical scenario with multiple base stations (BSs) and multiple user equipments (UEs). To this end, we derive exact achievable spectral efficiency (SE) expressions for any combining scheme. It is worth noting that we derive the closed-form SE expressions for the CF XL-MIMO with maximum ratio (MR) combining. Numerical results show that the SE performance of the CF XL-MIMO can be hugely improved compared with the small-cell XL-MIMO. It is interesting that a smaller antenna spacing leads to a higher correlation level among patch antennas. Finally, we prove that increasing the number of UE antennas may decrease the SE performance with MR combining

    Channel Estimation for XL-MIMO Systems with Polar-Domain Multi-Scale Residual Dense Network

    Full text link
    Extremely large-scale multiple-input multiple-output (XL-MIMO) is a promising technique to enable versatile applications for future wireless communications.To realize the huge potential performance gain, accurate channel state information is a fundamental technical prerequisite. In conventional massive MIMO, the channel is often modeled by the far-field planar-wavefront with rich sparsity in the angular domain that facilitates the design of low-complexity channel estimation. However, this sparsity is not conspicuous in XL-MIMO systems due to the non-negligible near-field spherical-wavefront. To address the inherent performance loss of the angular-domain channel estimation schemes, we first propose the polar-domain multiple residual dense network (P-MRDN) for XL-MIMO systems based on the polar-domain sparsity of the near-field channel by improving the existing MRDN scheme. Furthermore, a polar-domain multi-scale residual dense network (P-MSRDN) is designed to improve the channel estimation accuracy. Finally, simulation results reveal the superior performance of the proposed schemes compared with existing benchmark schemes and the minimal influence of the channel sparsity on the proposed schemes

    Joint Distributed Precoding and Beamforming for RIS-aided Cell-Free Massive MIMO Systems

    Full text link
    The amalgamation of cell-free networks and reconfigurable intelligent surface (RIS) has become a prospective technique for future sixth-generation wireless communication systems. In this paper, we focus on the precoding and beamforming design for a downlink RIS-aided cell-free network. The design is formulated as a non-convex optimization problem by jointly optimizing the combining vector, active precoding, and passive RIS beamforming for minimizing the weighted sum of users' mean square error. A novel joint distributed precoding and beamforming framework is proposed to decentralize the alternating optimization method for acquiring a suboptimal solution to the design problem. Finally, numerical results validate the effectiveness of the proposed distributed precoding and beamforming framework, showing its low-complexity and improved scalability compared with the centralized method

    Genome-Wide Detection of Small Regulatory RNAs in Deep-Sea Bacterium Shewanella piezotolerans WP3

    Get PDF
    Shewanella are one of the most abundant Proteobacteria in the deep-sea and are renowned for their versatile electron accepting capacities. The molecular mechanisms involved in their adaptation to diverse and extreme environments are not well understood. Small non-coding RNAs (sRNAs) are known for modulating the gene expression at transcriptional and posttranscriptional levels, subsequently playing a key role in microbial adaptation. To understand the potential roles of sRNAs in the adaptation of Shewanella toward deep-sea environments, here an in silico approach was utilized to detect the sRNAs in the genome of Shewanella piezotolerans WP3, a piezotolerant and psychrotolerant deep-sea iron reducing bacterium. After scanning 3673 sets of 5β€² and 3β€² UTRs of orthologous genes, 209 sRNA candidates were identified with high confidence in S. piezotolerans WP3. About 92% (193 out of 209) of these putative sRNAs belong to the class trans-encoded RNAs, suggesting that trans-regulatory RNAs are the dominant class of sRNAs in S. piezotolerans WP3. The remaining 16 cis-regulatory RNAs were validated through quantitative polymerase chain reaction. Five cis-sRNAs were further shown to act as cold regulated sRNAs. Our study provided additional evidence at the transcriptional level to decipher the microbial adaptation mechanisms to extreme environmental conditions

    Environmental Adaptation: Genomic Analysis of the Piezotolerant and Psychrotolerant Deep-Sea Iron Reducing Bacterium Shewanella piezotolerans WP3

    Get PDF
    Shewanella species are widespread in various environments. Here, the genome sequence of Shewanella piezotolerans WP3, a piezotolerant and psychrotolerant iron reducing bacterium from deep-sea sediment was determined with related functional analysis to study its environmental adaptation mechanisms. The genome of WP3 consists of 5,396,476 base pairs (bp) with 4,944 open reading frames (ORFs). It possesses numerous genes or gene clusters which help it to cope with extreme living conditions such as genes for two sets of flagellum systems, structural RNA modification, eicosapentaenoic acid (EPA) biosynthesis and osmolyte transport and synthesis. And WP3 contains 55 open reading frames encoding putative c-type cytochromes which are substantial to its wide environmental adaptation ability. The mtr-omc gene cluster involved in the insoluble metal reduction in the Shewanella genus was identified and compared. The two sets of flagellum systems were found to be differentially regulated under low temperature and high pressure; the lateral flagellum system was found essential for its motility and living at low temperature

    Characteristics and ecological functions of deep-sea viruses

    No full text

    Transcriptional profiling of CRP-regulated genes in deep-sea bacterium Shewanella piezotolerans WP3

    Get PDF
    The cAMP receptor protein (CRP) is a conserved regulator in bacteria and involved in regulation of energy metabolism, such as glucose, galactose, and citrate (Green et al., 2014 [1]). As an important catabolite activator protein, it has been well characterized in model microorganism such as Escherichia coli. However, our understanding of the roles of CRP in deep-sea bacteria is rather limited. To indentify the function of CRP, we performed whole genome transcriptional profiling using a custom designed microarray which contains 95% open reading frames of Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1914 m (Xiao et al., 2007 [2]; Wang et al., 2008 [3]). Here we describe the experimental procedures and methods in detail to reproduce the results (available at Gene Expression Omnibus database under GSE67731 and GSE67732) and provide resource to be employed for comparative analyses of CRP regulon and the regulatory network of anaerobic respiration in microorganisms which inhabited in different environments, and thus broaden our understanding of mechanism of bacteria against various environment stresses
    • …
    corecore