1,067 research outputs found

    The structure of f(R)f(R)-brane model

    Get PDF
    Recently, a family of interesting analytical brane solutions were found in f(R)f(R) gravity with f(R)=R+αR2f(R)=R+\alpha R^2 in Ref. [Phys. Lett. B 729, 127 (2014)]. In these solutions, inner brane structure can be turned on by tuning the value of the parameter α\alpha. In this paper, we investigate how the parameter α\alpha affects the localization and the quasilocalization of the tensorial gravitons around these solutions. It is found that, in a range of α\alpha, despite the brane has an inner structure, there is no graviton resonance. However, in some other regions of the parameter space, although the brane has no internal structure, the effective potential for the graviton KK modes has a singular structure, and there exists a series of graviton resonant modes. The contribution of the massive graviton KK modes to the Newton's law of gravity is discussed shortly.Comment: v2: 10 pages, 8 figures, to be published in EPJ

    Exotic Superconducting Properties in Topological Nodal Semimetal PbTaSe2_2

    Full text link
    We report the electronic properties of superconductivity in the topological nodal-line semimetal PbTaSe2_2. Angle-resolved photoemission measurements accompanied by band calculations confirmed the nodal-line band structure in the normal state of single crystalline PbTaSe2_2. Resistivity, magnetic-susceptibility and specific heat measurements have also been performed on high-quality single crystals. We observed upward features and large anisotropy in upper critical field (Hc2H_{c2}) measured in-plane (H//\textbf{ab}) and out-plane (H//\textbf{c}), respectively. Especially, Hc2H_{c2} measured in H//\textbf{ab} shows sudden upward features rather than a signal of saturation in ultralow temperatures. The specific heat measurements under magnetic field reveal a full superconducting gap with no gapless nodes. These behaviors in this clean noncentrosymmetric superconductor is possibly related to the underlying exotic physics, providing important clue for realization of topological superconductivity.Comment: 6 pages, 5 figures,1 table;Accepted for publication on PR

    (2′-Amino-4,4′-bi-1,3-thia­zol-2-aminium-κ2 N,N′)aqua­[citrato(4−)-κ3 O,O′,O′′)chromium(III) dihydrate

    Get PDF
    In the title compound, [Cr(C6H7N4S2)(C6H4O7)(H2O)]·2H2O, the CrIII atom is in a distorted octa­hedral environment, coordinated by one water mol­ecule, two N atoms from a protonated diamino­bithia­zole ligand and three O atoms from a citrate(4−) anion. The complex is zwitterionic, with the H atom from the uncoordinated carboxyl­ate group of the citrate anion transferred to one amino group of the diamino­bithia­zole ligand. O—H⋯O and N—H⋯O hydrogen bonds link the complexes into layers including the two uncoordinated water mol­ecules
    corecore