248 research outputs found

    Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud Pre-training

    Full text link
    Masked Autoencoders (MAE) have shown promising performance in self-supervised learning for both 2D and 3D computer vision. However, existing MAE-style methods can only learn from the data of a single modality, i.e., either images or point clouds, which neglect the implicit semantic and geometric correlation between 2D and 3D. In this paper, we explore how the 2D modality can benefit 3D masked autoencoding, and propose Joint-MAE, a 2D-3D joint MAE framework for self-supervised 3D point cloud pre-training. Joint-MAE randomly masks an input 3D point cloud and its projected 2D images, and then reconstructs the masked information of the two modalities. For better cross-modal interaction, we construct our JointMAE by two hierarchical 2D-3D embedding modules, a joint encoder, and a joint decoder with modal-shared and model-specific decoders. On top of this, we further introduce two cross-modal strategies to boost the 3D representation learning, which are local-aligned attention mechanisms for 2D-3D semantic cues, and a cross-reconstruction loss for 2D-3D geometric constraints. By our pre-training paradigm, Joint-MAE achieves superior performance on multiple downstream tasks, e.g., 92.4% accuracy for linear SVM on ModelNet40 and 86.07% accuracy on the hardest split of ScanObjectNN.Comment: Accepted by IJCAI 202

    CasFusionNet: A Cascaded Network for Point Cloud Semantic Scene Completion by Dense Feature Fusion

    Full text link
    Semantic scene completion (SSC) aims to complete a partial 3D scene and predict its semantics simultaneously. Most existing works adopt the voxel representations, thus suffering from the growth of memory and computation cost as the voxel resolution increases. Though a few works attempt to solve SSC from the perspective of 3D point clouds, they have not fully exploited the correlation and complementarity between the two tasks of scene completion and semantic segmentation. In our work, we present CasFusionNet, a novel cascaded network for point cloud semantic scene completion by dense feature fusion. Specifically, we design (i) a global completion module (GCM) to produce an upsampled and completed but coarse point set, (ii) a semantic segmentation module (SSM) to predict the per-point semantic labels of the completed points generated by GCM, and (iii) a local refinement module (LRM) to further refine the coarse completed points and the associated labels from a local perspective. We organize the above three modules via dense feature fusion in each level, and cascade a total of four levels, where we also employ feature fusion between each level for sufficient information usage. Both quantitative and qualitative results on our compiled two point-based datasets validate the effectiveness and superiority of our CasFusionNet compared to state-of-the-art methods in terms of both scene completion and semantic segmentation. The codes and datasets are available at: https://github.com/JinfengX/CasFusionNet

    Surround-view Fisheye BEV-Perception for Valet Parking: Dataset, Baseline and Distortion-insensitive Multi-task Framework

    Full text link
    Surround-view fisheye perception under valet parking scenes is fundamental and crucial in autonomous driving. Environmental conditions in parking lots perform differently from the common public datasets, such as imperfect light and opacity, which substantially impacts on perception performance. Most existing networks based on public datasets may generalize suboptimal results on these valet parking scenes, also affected by the fisheye distortion. In this article, we introduce a new large-scale fisheye dataset called Fisheye Parking Dataset(FPD) to promote the research in dealing with diverse real-world surround-view parking cases. Notably, our compiled FPD exhibits excellent characteristics for different surround-view perception tasks. In addition, we also propose our real-time distortion-insensitive multi-task framework Fisheye Perception Network (FPNet), which improves the surround-view fisheye BEV perception by enhancing the fisheye distortion operation and multi-task lightweight designs. Extensive experiments validate the effectiveness of our approach and the dataset's exceptional generalizability.Comment: 12 pages, 11 figure
    • …
    corecore