67 research outputs found
Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer
This article provides a novel method of constructing an optical fiber localized surface plasmon resonance (LSPR) biosensor. A gold nanoparticle (NP) assembled film as the sensing layer was built on the polyelectrolyte (PE) multilayer modified sidewall of an unclad optical fiber. By using a trilayer PE structure, we obtained a monodisperse gold NP assembled film. The preparation procedure for this LSPR sensor is simple and time saving. The optical fiber LSPR sensor has higher sensitivity and outstanding reproducibility. The higher anti-interference ability for response to an antibody makes it a promising method in application as a portable immuno-sensor
A Triad of Lys12, Lys41, Arg78 Spatial Domain, a Novel Identified Heparin Binding Site on Tat Protein, Facilitates Tat-Driven Cell Adhesion
Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs) have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat–heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR) spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events
Seismic Performance of Reinforced Concrete Short Columns Subjected to Freeze–Thaw Cycles
Previous research shows that freeze–thaw cycles represent one of the most dangerous threats to reinforced concrete (RC) structures. However, there is almost no experimental data on the effects of freeze–thaw cycles on the seismic behavior of RC columns showing flexure-shear failure. In this study, three columns with the shear span-to-depth ratio of 2.5 were subjected to different numbers of freeze–thaw cycles (FTCs) and pseudo-static testing. The seismic performance indexes of the specimens were analyzed in terms of hysteretic behavior, skeleton curves, shear deformation, and energy dissipation. The test observations show that the failure patterns of the test columns altered from the flexure dominated to shear dominated, owing to the more severe deterioration in shear capacity induced by freeze–thaw attack than in flexure capacity. The test results also indicate that freeze–thaw cycles significantly decrease the ductility and energy dissipation of test columns, and they increase the contributions of shear deformation to the total deformation
High-Precision Anti-Interference Control of Direct Drive Components
This study presents a compound control algorithm that enhances the servo accuracy and disturbance suppression capability of direct drive components (DDCs). The servo performance of DDCs is easily affected by external disturbance and the deterioration of assembly characteristics due to a lack of deceleration device. The purpose of this study is to compensate for the impact of external and internal disturbances on the system. First, a linear state space model of the system is established. Second, we analyzed the main factors restricting the performance of DDCs which includes sensor noise, friction and external disturbance. Then, a fractional-order proportional integral (FOPI) controller was used to eliminate the steady-state error caused by the time-invariable disturbance which can also improve the system’s anti-interference capability. A state-augmented Kalman filter (SAKF) was proposed to suppress the quantization noise and compensate for the time-varying disturbances simultaneously. The effectiveness of the proposed compound algorithm was demonstrated by comparative experiments, demonstrating a maximum 89.34% improvement. The experimental results show that, compared with the traditional PI controller, the FOPISAKF controller can not only improve the tracking accuracy of the system, but also enhance the disturbance suppression ability
Research on high-precision coal flow detection of belt conveyors based on machine vision
In response to the problems of missing image details and poor fitting effect in multiple fractures or areas with large fracture spacing in existing machine vision based coal flow detection methods for belt conveyors, a high-precision coal flow detection system for belt conveyors based on machine vision is proposed. It is based on the principle of direct beam oblique collection laser triangulation. The line laser emitter is arranged directly above the measurement position of the belt conveyor and vertically irradiates the coal pile. The coal pile moves uniformly with the belt conveyor, and a camera at an oblique angle is used to capture real-time images of the surface of the coal pile containing laser stripes. The method calibrates the coal flow detection system, including camera internal parameter calibration and laser plane calibration, to obtain the height information of the coal pile. The processing of laser stripe images on coal flow cross-sections is carried out. The gray center of gravity method and regional skeleton method are compared and analyzed from multiple perspectives such as extraction precision and algorithm real-time performance. Based on the comparison results, the regional skeleton method is selected to extract the center of laser stripes. Aiming at the problem of poor fitting effect of laser stripe fracture repair using image dilation operation, the least squares method is proposed as the laser stripe fracture repair algorithm. Compared with closed operations, the least squares method has better smoothing effect and higher precision in fitting processing. The method establishes a coal flow cross-sectional area calculation model. By calculating the cross-sectional area of the coal pile at each frame, the coal flow volume at different belt speeds can be obtained. The experimental results show that when the belt speeds are 0.25, 0.5, and 1 m/s respectively, the detection system errors are relatively small, with maximum errors of 2.78%, 3.61%, and 3.89%. It verifies that the coal flow detection system has high accuracy
- …