46 research outputs found

    Advances in the regulatory mechanisms of mTOR in necroptosis

    Get PDF
    The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis

    The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136267/1/aenm201601299_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136267/2/aenm201601299.pd

    Multi-functional groups decorated composite nanofiber separator with excellent chemical stability in ester-based electrolyte for enhancing the lithium-ion transport

    Get PDF
    As various heat-resistant polymer separators come out, although they possess better thermal stability and superior affinity to liquid electrolyte than commercial polyolefin separator, the porous structure and chemical stability of these novel separators should be paid more attention. In this work, we prepare a thin polyacrylonitrile/cellulose acetate (PAN/CA) composite nanofiber separator and discuss the importance of chemical stability in the ester-based electrolyte. The addition of CA decreases the PAN/CA fiber diameter from 310 nm to 210 nm. However, CA containing a lot of ester groups is easy to be dissolved by liquid electrolyte for the property of similarity and compatibility. Hence, the obtained PAN/CA composite nanofiber separator is treated via alkaline hydrolysis process, and some ester groups are transformed to be hydroxyl groups. Noteworthily, hydroxyl-rich PAN/CA composite nanofiber separator not only remains stable in electrolyte, but also possesses an improved lithium-ion transport property for reducing concentration polarization effect. As a result, the LiCoO2/Li half cells employing the hydroxyl-rich composite nanofiber separator exhibits better capacity retention (118.5 mAh g -1 after 300 cycles) and superior rate performance (143.1 mAh g -1 at 3C). Therefore, this multi-functional groups decorated composite nanofiber separator with excellent chemical stability is a candidate for next-generation lithium-based battery

    Multi‐Scale Microstructural Thermoelectric Materials: Transport Behavior, Non‐Equilibrium Preparation, and Applications

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137226/1/adma201602013_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137226/2/adma201602013.pd

    Function of TRP channels in monocytes/macrophages

    Get PDF
    The transient receptor potential channel (TRP channel) family is a kind of non- specific cation channel widely distributed in various tissues and organs of the human body, including the respiratory system, cardiovascular system, immune system, etc. It has been reported that various TRP channels are expressed in mammalian macrophages. TRP channels may be involved in various signaling pathways in the development of various systemic diseases through changes in intracellular concentrations of cations such as calcium and magnesium. These TRP channels may also intermingle with macrophage activation signals to jointly regulate the occurrence and development of diseases. Here, we summarize recent findings on the expression and function of TRP channels in macrophages and discuss their role as modulators of macrophage activation and function. As research on TRP channels in health and disease progresses, it is anticipated that positive or negative modulators of TRP channels for treating specific diseases may be promising therapeutic options for the prevention and/or treatment of disease

    A Morphing-Based Method for Paleotopographic Reconstruction of the Transverse Canyon

    No full text
    The transverse canyon is a V-shaped, fluvial-genetic canyon, a secondary valley formed by transverse drainage crossing a tectonically uplifted mountain. Paleotopography of the transverse canyon is vital to drainage connection and river capture, offering insight into the processes that link large-scale river systems, analyzing paleodrainage patterns, and recreating headward erosion. Notably, modern paleotopographic reconstruction methods are usually limited to reconstructions of paleotopography in vast sedimentary basins and denuded hills in orogenic belts. When applied to transverse canyons, a specific secondary valley found in tiny locations, these techniques are difficult, expensive, and ineffective. This paper proposes an automated method for reconstructing the paleotopography of the transverse canyon using the digital elevation model (DEM) and river. (1) Restore the ridgeline above the transverse canyon based on the ridgelines of the mountains on both sides; (2) create a buffer zone based on the river centerline with unequal buffer distances on each side; (3) construct a mesh surface by interpolating transition curves from the morphing method, using the three-edge type; (4) apply a spatial interpolation method to the elevation points on the mesh surface to construct the DEM above the transverse canyon and stitch it to the input DEM to obtain the paleotopographic DEM; (5) calculate the spatial attributes. The objective of this study is to reconstruct the paleotopography of eight typical transverse canyons in the comb-like fold belt of northern Chongqing. As part of the paleotopographic reconstruction of the transverse canyon, we address the effects of dislocated mountains, erosion gullies, and different morphing techniques, as well as the applicability of the proposed method to reconstructing other secondary valleys. In conclusion, we reconstruct paleotopographic DEMs of transverse canyons to replicate headward erosion processes, assess paleodrainage patterns, and build three-dimensional solid models

    Consolidated Bioprocess for Bioethanol Production from Lignocellulosic Biomass Using Clostridium thermocellum DSM 1237

    No full text
    A consolidated bioprocessing (CBP) using Clostridium thermocellum DSM 1237 for bioethanol production in anaerobic bottles and a 3-L fermenter from biomass was investigated. The effects of key operational parameters including different carbon sources, temperature, and substrates on the metabolic performance of the strain were firstly evaluated. It was found that ethanol yield reached 0.60 g/L with a cell biomass of 0.80 g/g at the optimal temperature of 60 degrees C with 0.5% (w/v) cellobiose. Further experiments indicated that sugarcane bagasse (SCB) could be utilized to efficiently culture this strain. Ethanol yield reached 0.68 g/L (65.8% of theoretical yield) from alkali-pretreated SCB. In the subsequent 3-L fermenter trial, the maximum ethanol 0.86 g/L (83.3% of theoretical yield) was achieved, with enzymes enriched in both cellulase and xylanase. The CBP provided enzymes on-site and integrated hydrolysis and fermentation in one-step, which might be an effective approach for economic bioethanol production

    Comparison of the Roles of Optimizing Root Distribution and the Water Uptake Function in Simulating Water and Heat Fluxes within a Maize Agroecosystem

    No full text
    Roots are an important water transport pathway between soil and plant. Root water uptake (RWU) plays a key role in water and heat exchange between plants and the atmosphere. Inaccurate RWU schemes in land surface models are one crucial reason for decreased model performance. Despite some types of RWU functions being adopted in land surface models, none have been certified as suitable for maize farmland ecosystems. Based on 2007–2009 data observed at the maize agroecosystem field station in Jinzhou, China, the RWU function and root distribution (RD) in the Common Land Model (CoLM) were optimized and the effects of the optimizations on model performance were compared. Results showed that RD parameters calculated with root length density were more practical relative to root biomass in reflecting soil water availability, and they improved the simulation accuracy for water and heat fluxes. The modified RWU function also played a significant role in optimizing the simulation of water and heat fluxes. Similarly, the respective and integrated roles of two optimization schemes in improving CoLM performance were significant during continuous non-precipitation days, especially during the key water requirement period of maize. Notably, the improvements were restrained within a threshold of soil water content, and the optimizations were inoperative outside this threshold. Thus, the optimized RWU function and the revised RD introduced into the CoLM model are applicable for simulation of water and heat fluxes for maize farmland ecosystems in arid areas

    Soil Organic Carbon Stocks in Terrestrial Ecosystems of China: Revised Estimation on Three-Dimensional Surfaces

    No full text
    The estimation of soil organic carbon (SOC) stock in terrestrial ecosystems of China is of particular importance because it exerts a major influence on worldwide terrestrial carbon (C) storage and global climate change. Map-based estimates of SOC stocks conducted in previous studies have typically been applied on planimetric areas, which led to the underestimation of SOC stock. In the present study, SOC stock in China was estimated using a revised method on three-dimensional (3-D) surfaces, which considered the undulation of the landforms. Data were collected from the 1:4 M China Soil Map and a search work from the Second Soil Survey in China. Results indicated that the SOC stocks were 28.8 Pg C and 88.5 Pg C in soils at depths of 0–20 cm and 0–100 cm, corresponding to significant increases of 5.66% and 5.44%, respectively. Regression analysis revealed that the SOC stock accumulated with the increase of areas on 3-D surfaces. These results provide more reasonable estimates and new references about SOC stocks in terrestrial ecosystems of China. The method of estimation on 3-D surfaces has scientific meaning to promote the development of new approaches to estimate accurate SOC stocks

    Caspase-4 in glioma indicates deterioration and unfavorable prognosis by affecting tumor cell proliferation and immune cell recruitment

    No full text
    Abstract Gliomas are the most common malignant tumors of the central nervous system, accounting for approximately 80% of all malignant brain tumors. Accumulating evidence suggest that pyroptosis plays an essential role in the progression of cancer. Unfortunately, the effect of the pyroptosis-related factor caspase-4 (CASP4) on immunotherapy and drug therapy for tumors has not been comprehensively investigated. In this study, we systematically screened six hub genes by pooling differential pyroptosis-related genes in The Cancer Genome Atlas (TCGA) glioma data and the degree of centrality of index-related genes in the protein–protein interaction network. We performed functional and pathway enrichment analyses of the six hub genes to explore their biological functions and potential molecular mechanisms. We then investigated the importance of CASP4 using Kaplan–Meier survival analysis of glioma patients. TCGA and the Chinese Glioma Genome Atlas (CGGA) databases showed that reduced CASP4 expression leads to the potent clinical deterioration of glioma patients. Computational analysis of the effect of CASP4 on the infiltration level and recruitment of glioma immune cells revealed that CASP4 expression was closely associated with a series of tumor-suppressive immune checkpoint molecules, chemokines, and chemokine receptors. We also found that aberrant CASP4 expression correlated with chemotherapeutic drug sensitivity. Finally, analysis at the cellular and tissue levels indicated an increase in CASP4 expression in glioma, and that CASP4 inhibition significantly inhibited the proliferation of glioma cells. Thus, CASP4 is implicated as a new prognostic biomarker for gliomas with the potential to further guide immunotherapy and chemotherapy strategies for glioma patients
    corecore