53 research outputs found

    Effects of Surface Modification of Nanotube Arrays on the Performance of CdS Quantum-Dot-Sensitized Solar Cells

    Get PDF
    CdS-sensitized TiO2 nanotube arrays have been fabricated using the method of successive ionic layer adsorption and reaction and used as a photoanode for quantum-dot-sensitized solar cells. Before being coated with CdS, the surface of TiO2 nanotube arrays was treated with TiCl4, nitric acid (HNO3), potassium hydroxide (KOH), and methyltrimethoxysilane (MTMS), respectively, for the purpose of reducing the interface transfer resistance of quantum-dot-sensitized solar cells. The surfaces of the modified samples represented the characteristics of superhydrophilic and hydrophobic which directly affect the power conversion efficiency of the solar cells. The results showed that surface modification resulted in the reduction of the surface tension, which played a significant role in the connectivity of CdS and TiO2 nanotube arrays. In addition, the solar cells based on CdS/TiO2 electrode treated by HNO3 achieved a maximum power conversion efficiency of 0.17%, which was 42% higher than the reference sample without any modification

    Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets

    Get PDF
    A gold nanoshell-functionalized polymer multilayer nanorocket performs self-propulsion upon the irradiation with NIR light in the absence of chemical fuel. Theoretical simulations reveal that the NIR light-triggered self-thermophoresis drives the propulsion of the nanorocket. The nanorocket also displays ­efficient NIR light-triggered propulsion in ­biofluids and thus holds considerable promise for various potential biomedical applications

    Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets

    Get PDF
    A gold nanoshell-functionalized polymer multilayer nanorocket performs self-propulsion upon the irradiation with NIR light in the absence of chemical fuel. Theoretical simulations reveal that the NIR light-triggered self-thermophoresis drives the propulsion of the nanorocket. The nanorocket also displays ­efficient NIR light-triggered propulsion in ­biofluids and thus holds considerable promise for various potential biomedical applications

    Macroscale Chemotaxis from a Swarm of Bacteria-Mimicking Nanoswimmers

    Get PDF
    Inspired by the dynamics of bacterial swarming, we report a swarm of polymer‐brush‐grafted, glucose‐oxidase‐powered Janus gold nanoswimmers with a positive, macroscale chemotactic behavior. These nanoswimmers are prepared through the grafting of polymer brushes onto one side of gold nanoparticles, followed by functionalization with glucose oxidase on the other side. The resulting polymer‐brush‐functionalized Janus gold nanoswimmers exhibit efficient propulsion with a velocity of up to approximately 120 body lengths s−1 in the presence of glucose. The comparative analysis of their kinematic behavior reveals that the grafted polymer brushes significantly improve the translational diffusion of Janus gold nanoswimmers. Particularly, these bacteria‐mimicking Janus gold nanoswimmers display a collectively chemotactic motion along the concentration gradient of a glucose resource, which could be observed at the macroscale

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Chemical Composition, and Antioxidant and Cholinesterase Inhibitory Activities of <i>Lindera glauca</i> Fruit Essential Oil and Molecular Docking Studies of Six Selected Compounds

    No full text
    Lindera glauca is a shrub or small tree mostly distributed in China, Japan and Korea. However, reports on the biological activities of Lindera glauca fruit essential oil (LGFEO) are limited. The study on its chemical composition, and antioxidant and cholinesterase inhibitory activities were performed, along with molecular docking of six selected compounds. The LGFEO was extracted by hydro distillation and analyzed by GC-MS and GC-FID. Antioxidant activities of LGFEO were evaluated by three methods with different mechanisms. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of LGFEO were tested. A total of 48 components were identified representing 95.74% of the total composition of LGFEO in which the major compounds were (E)-β-ocimene (41.53%), α-copaene (13.17%), δ-cadinene (6.20%), 3-carene (5.89%) and eucalyptol (3.57%). Weak antioxidant activities of LGFEO in three assays (9.52, 11.36 and 38.98 μmol TE/g, respectively) were observed. LGFEO showed obvious cholinesterase inhibitory activities at the final concentrations of 50 and 20 μg/mL. IC50 values for acetylcholinesterase and butyrylcholinesterase were 46.48 and 34.85 μg/mL, respectively. Molecular docking revealed that geranyl acetate, β-caryophyllene and limonene had lower binding affinities in the range of −7.1 to −6.1 kcal/mol through hydrophobic interactions and hydrogen bond. Six compounds including 3-carene, limonene, eucalyptol, (E)-β-ocimene, geranyl acetate and β-caryophyllene could contribute together to cholinesterase inhibitory activities of LGFEO. This essential oil indicated low potential as natural antioxidant, but it could be potentially used as cholinesterase inhibitor with possible application in food, aromatherapy and pharmaceutical industries

    Stem-Cell-Membrane Camouflaging on Near-Infrared Photoactivated Upconversion Nanoarchitectures for in Vivo Remote-Controlled Photodynamic Therapy

    No full text
    The upconversion nanoparticle (UCNP)-based photodynamic therapy (PDT) agents are promising for deep-tissue cancer treatment because they may overcome current limitations due to the shallow penetration depth of visible light. However, limited blood circulation time and poor tumor-targeting capability challenge the therapeutic efficacy of UCNP-based PDT in vivo. Here, we demonstrate intravenous injectable stem-cell-membrane-camouflaged upconversion nanoarchitectures as a biomimetic tumor PDT platform. The biomimetic PDT system is constructed by fusing mesoporous-silica-encapsulated β-NaYF4:Yb<sup>3+</sup>,Er<sup>3+</sup> UCNPs with stem-cell membranes. Translocation of the stem-cell membranes to the UCNPs led to the translation of multiple membrane components, bringing the membranes’ long circulation and tumor-targeting capability to the resulting platform. Multiphotosensitizers were encapsulated and simultaneously activated by a 980 nm single laser because of the multicolor emission capability of the UCNP cores. In vitro and in vivo experiments demonstrate that this novel platform inherits the tumor-targeting properties of stem cells and exhibits remarkable accumulation at the tumor site. In vivo tumor PDT results show higher tumor inhibition efficacy by tail intravenous administration of this new photosensitizer-loaded system. This stem-cell-membrane-camouflaged upconversion nanoarchitecture provides artificial UCNPs with natural cell membranes and holds considerable promise for deep-tissue PDT cancer treatment by systemic administration

    A dual-functional nanomedicine combining fluorinated antisense oligonucleotide with chemotherapeutic drug for synergistic gene-chemo tumor treatment

    No full text
    The synergistic anti-tumor therapy based on chemotherapeutic drugs and gene drugs has become a new direction of tumor treatment. However, the significantly distinct physicochemical properties and the unbalanced coordinate proportion of chemotherapeutic and genetic drugs limit the actual therapeutic efficiency of the combined drug delivery strategy. Herein, we developed a simple method to self-assemble the fluorine atom-modified antisense oligonucleotide (2′F-G1319) with chemotherapeutic pirarubicin (THP) to form the carrier-free nanomedicines (2′F-G1319/THP NMs), which could efficaciously achieve the synergistic gene therapy and chemotherapy. In this study, 2′F-G1319 and THP could be self-assembled to form uniform nanoparticles through enhanced intermolecular interactions after G1319 was modified with the fluorine atom. Both in-vitro and in-vivo experiments verified that 2′F-G1319/THP NMs exhibited significant synergistic anti-tumor effects with high biostability and biocompatibility. Owing to the simple and universal synthesis process, our constructed self-assembled nanomedicine provides a promising opportunity for the wide applications of nanomedicines and is expected to realize more effective synergistic anti-tumor therapy without the addition of non-therapeutic excipient
    corecore